Hepatitis C (HCV) infection occurs in as many as 33% of the patients with human immunodeficiency virus (HIV) infection. In view of their improved survival, liver disease will become more clinically significant in patients coinfected with HIV/HCV. Several studies in patients with hemophilia have shown that coinfected patients develop earlier and more severe liver disease, including hepatocellular carcinoma. In nonhemophilic cohorts, lower CD4 counts are associated with an increased prevalence of cirrhosis. However, HCV infection does not seem to alter the natural history of HIV infection in most cases. Human immunodeficiency virus coinfection in pregnant women increases the risk of perinatal HCV transmission 2-fold, with more than 25% of occurrences involving transmission of both viruses: cesarean delivery significantly decreases this risk. The expanded use of highly active antiretroviral therapy may lead to further improvement in morbidity and mortality from HIV infection. Thus, the management of coexistent HCV liver disease will need to be formulated. We suggest that alcohol be disallowed. Interferon and ribavirin in combination are likely to become the therapy of choice, particularly in coinfected patients with higher CD4 counts, lower HCV viremia, and non-1 genotype. During treatment, complete blood cell counts need to be closely monitored. Future controlled trials will determine the efficacy and safety of long-acting interferon preparations. Administration of highly active antiretroviral therapy, with the intent to prevent decreases in CD4 counts, seems crucial in stemming liver disease progression. However, some drugs have clear-cut hepatotoxic potential and patients with known liver disease should be closely monitored.

BACKGROUND
In the absence of human immunodeficiency virus (HIV) infection, the progression of hepatitis C (HCV) to cirrhosis is slow, but is accelerated by the use of more than 50 g of alcohol daily, male sex, older age at infection, longer disease duration, and coinfection with hepatitis B. These estimates are likely to represent a worst-case scenario, as the follow-up of patients with elevated transaminase levels or with more clinical symptoms formed the basis for the largest reported series. In fact, patients with normal serum alanine aminotransferase levels have a much slower estimated progression of fibrosis.

More than 60% of the HIV-seropositive patients with a history of injection drug use, and about 4% of the HIV-positive homosexual patients are coinfected with the HCV. A Veterans Affairs Cooperative Study noted an overall anti-HCV antibody prevalence of 33%, confirming European data. In many cases, coinfection with HIV/HCV resulted in earlier instances of cirrhosis and liver failure. Because of the improved survival of patients with HIV, coinfection with HCV is likely to become a significant clinical problem in the future.

This article reviews the diagnosis and natural history of HCV infection in HIV-seropositive patients and summarizes data.
concerning sexual and perinatal transmission. It also examines the efficacy and adverse events of HCV therapy in this group of patients, and the impact of highly active antiretroviral therapy (HAART) on the course of hepatitis C.

METHODS

We searched the Ovid databases, including AIDSLINE and MEDLINE from January 1, 1993, to November 30, 1999, using the following key words: “hepatitis C,” “HCV,” “HIV,” “liver diseases,” “drug toxicity,” “antiviral therapy,” “therapy,” “interferon,” and “vaccination.” These key words were exploded and appropriate search combinations were performed. References were manually scanned for relevant articles published prior to 1993. Abstracts were included only if the complete data set was available to us. Relevant abstracts from the Seventh Conference on Retroviruses and Opportunistic Infections were also included. In this review article, patients with dual HIV/HCV infection are termed “coinfected patients” or “patients with HIV/HCV.” Articles concerning perinatal transmission were selected when they included both HCV-infected and coinfected pregnant women, to ensure uniformity in patient selection and follow-up. Pooled relative risks of combined data were performed with Epistat Version 1991 (Epistat, Round Rock, Tex). χ² Tests were performed using GraphPad Pris, Version 2.01 (GraphPad Software Inc, San Diego, Calif).

DIAGNOSIS OF HCV INFECTION IN PATIENTS WITH HIV

Detection of anti-HCV antibodies is based on second- or third-generation enzyme-linked immunosorbent assay tests. The first-generation enzyme-linked immunosorbent assay lacked sensitivity (77%) in HIV-infected patients. Recombinant immunoblot assay tests are widely available. The enzyme-linked immunosorbent assay-2 antibody test has a sensitivity of 96% and a specificity of 91% in HIV-infected patients. A minority of HIV-infected patients, about 4%, has detectable serum HCV RNA, by reverse transcriptase-polymerase chain reaction, in the absence of detectable enzyme-linked immunosorbent assay-2 antibodies. These patients usually have low CD4 counts and may develop detectable antibodies after HAART, presumably owing to immune restoration. However, loss of antibody in the continued presence of HCV RNA is rare.

HCV RNA CONCENTRATIONS IN PATIENTS WITH HIV

To measure peripheral HCV RNA, most investigators have used serum samples. Serum must be separated from white and red blood cells soon after clot formation, as significant decreases in HCV RNA levels occur when the serum is separated after 3 to 4 hours. Consequently, interpretation of studies giving insufficient data on specimen handling is difficult.

As a whole, patients with HIV/HCV have higher serum HCV RNA levels and liver HCV RNA levels than patients with HCV alone. In patients with HCV infection, serum HCV RNA levels increase by at least 0.5 logs after HIV seroconversion. A study in coinfected patients demonstrated that HCV RNA, including the RNA-negative strand (a true marker of HCV replication), is often found in extrahepatic sites. Production of HCV RNA outside of the liver could explain the lack of correlation between liver and serum levels, as assayed by different polymerase chain reaction–based methods.

An independent inverse correlation between serum HCV RNA levels and CD4 lymphocyte counts was documented and, indeed, documented in 2 groups of coinfected patients. However, other studies demonstrated either a weak inverse correlation or no correlation between HCV RNA levels and CD4 counts.

The biological behavior of HCV appears to be different in the setting of immunosuppression. Significantly fewer HCV genome variations (quasi species) occur in patients with HIV infection or after liver transplantation than in immunocompetent patients. However, in coinfected patients, more variability occurs in the HCV hypervariable region, resulting in more changes in the envelope amino acid sequence. Three groups found that coinfected patients with hemophilia may frequently undergo changes in the predominant genotype over time, even after heat-treated clotting factors were administered.

Thus, HIV coinfection is associated with increased HCV viral titers, possibly because of increased viral replication in a setting of immunosuppression. The absence of a convincing inverse correlation between HCV RNA levels and CD4 counts may be explained by the fact that peripheral CD4 counts do not reflect intrahepatic immunity. The significance of HCV sequence variations in coinfected patients remains to be determined.

NATURAL HISTORY IN PATIENTS WITH HEMOPHILIA

The use of liver failure as an end point in the natural history of HCV is unsatisfactory because of difficulties in defining failure. Elevations in the serum bilirubin level may be associated with opportunistic infections and with numerous medications used in HIV disease, independent of liver function. Patients with compensated cirrhosis should not be included in the definition of liver failure, as HCV-associated cirrhosis may follow an indolent course for years.

Some studies have not clearly ruled out concurrent hepatitis B infection, or have even included patients with circulating hepatitis B surface antigen. Perhaps the major drawback is that very few studies attempted to quantify the patient’s alcohol consumption. This is a crucial piece of information since alcohol consumption is a major cofactor in the progression of liver disease in patients with HCV.

With few exceptions, articles presented no histologic data because of the sample population. The advantage of studying patients with hemophilia is the frequent availability of a known HCV-exposure date.
larger studies included 165 coinfected patients: the coinfected patients developed hepatic decompensation or failure more frequently (8% and 14%, respectively) than HCV-infected controls without HIV (0% and 1%, respectively). The median follow-up was approximately 15 years in both studies. While it is tempting to conclude that HIV infection accelerated the progression of liver disease, it is difficult to discount possible cofactors, particularly alcohol use. A recent study used the United Kingdom National Haemophilia Register data to assess the risk of death from liver disease and hepatocellular cancer in patients with haemophilia. Liver disease deaths constituted 5% of all deaths. The study cohort suffered mortality rates from liver disease and liver carcinoma (assumed to be due to HCV infection) that were higher than expected in the general population. In addition, coinfected patients who were contaminated between the ages of 25 and 44 years had a much higher likelihood of dying of chronic liver disease or cancer (17.1%) than patients with HCV infection only (2.2%). The difference was less marked in older patients, 18.7% in coinfected patients vs 14.3% in patients with HCV.

A smaller investigation showed that 4% of all deaths occurring in HIV-positive patients with haemophilia were due to liver disease. Although there was no convincing overall association between anti-HCV positivity and mortality, patients with an indeterminate HCV antibody and more advanced immunosuppression experienced higher liver mortality. Two studies found no excess liver mortality in coinfected patients with haemophilia who had CD4 counts higher than 0.35 \times 10^9/L. However, in patients with acquired immunodeficiency syndrome, 50% of deaths were due to liver disease. Since hepatic decompensation was clinically evident in patients with CD4 counts lower than 0.20 \times 10^9/L, it may be inferred that liver fibrosis had progressed before marked immunosuppression occurred. In 2 studies, patients with haemophilia and HCV infection alone did not develop liver decompensation. On average, the time course from first HCV exposure to the onset of clinical liver disease has been calculated to be 15 to 20 years in coinfected patients with haemophilia. Historically, that outcome would be twice as likely and at least 10 years earlier than in patients with HCV only.

Interestingly, HCV genotype 1 is more common in coinfected patients compared with HCV-infected patients in Europe and in the United States. This fact has been used to explain, in part, the presumed worse prognosis in patients with HIV/HCV.

NATURAL HISTORY IN PATIENTS WITHOUT HEMOPHILIA

Hepatic tissue is more easily detected in patients without haemophilia. Coinfected patients with CD4 counts lower than 0.40 \times 10^9/L display less piecemeal necrosis and portal inflammation. This finding corroborates the idea that HCV-induced liver disease is immune mediated. A recent report evaluated the factors associated with histologic severity in 59 HCV-infected patients, 48 patients (81%) being HIV coinfected who had CD4 counts higher than 0.20 \times 10^9/L at the time of liver biopsy. Both HIV positivity and genotype 1b were significantly associated with hepatic fibrosis and piecemeal necrosis.

A Spanish study evaluating 547 liver biopsy specimens found that cirrhosis was present in similar percentages of HCV-infected patients (13%) and coinfected patients (12%). However, cirrhosis was found earlier, within 5 years of presumed HCV infection, in 4% of the coinfected group; thereafter, more patients in the HCV-infected group (21%) developed cirrhosis. Considering that the evaluation of alcohol use was unclear and that firm evidence has emerged that alcohol is strongly and independently associated with fibrosis in coinfected patients, interpretation of the study data must be cautious.

In an attempt to clarify the relationship between HIV and HCV, 2 groups used a simple mathematical formula to estimate the rate of hepatic fibrosis progression in patients with HCV. One study compared liver biopsy specimens from 84 patients with HIV/HCV with those of 120 patients with HCV infection alone. The 2 groups had comparable risk factors, age, sex, alcohol use, estimated duration of HCV infection, and laboratory values. The median estimated rate of fibrosis progression was similar to prior estimates, and was no higher in coinfected patients compared with the HCV-infected cohort. The second study evaluated 122 patients with HIV/HCV and 122 controls with HCV and found that coinfected patients had a significantly higher estimated progression of fibrosis. The crucial difference between these 2 studies resides in CD4 counts, which were higher in the first (mean, 0.48 \times 10^9/L) as opposed to the second cohort (median, 0.30 \times 10^9/L). Six articles, listed in Table 1, have shown an inverse correlation between CD4 counts and the prevalence of cirrhosis. This fact may well explain the above discrepant results. Additionally, a Th2 type of cytokine response, which is often found in patients with HIV, has been linked, in mice, with more severe liver fibrosis after experimental injury. A Th2 response promotes antibody production and limits Th1 or a cytotoxic response.

<table>
<thead>
<tr>
<th>Source, y</th>
<th>Mean CD4+ Cell Counts, (\times 10^9/L)</th>
<th>No. of Patients With Cirrhosis/Total No. of Sampling (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbaro et al, 1996</td>
<td>530</td>
<td>4/55 (7.3)</td>
</tr>
<tr>
<td>Puoti et al, 1998</td>
<td>482</td>
<td>10/84 (11.9)</td>
</tr>
<tr>
<td>Benhamou et al, 1999</td>
<td>305*</td>
<td>19/122 (15.6)</td>
</tr>
<tr>
<td>Pol et al, 1998</td>
<td>300*</td>
<td>10/52 (19.2)</td>
</tr>
<tr>
<td>Toyota et al, 1997</td>
<td>194</td>
<td>5/27 (18.5)</td>
</tr>
<tr>
<td>Bierhoff et al, 1997</td>
<td>99*</td>
<td>2/22 (9.1)</td>
</tr>
</tbody>
</table>

*Indicates the studies where the median, rather than mean, was used for analyses.
In humans, it could be hypothesized that declines in CD4 counts and a shift of helper lymphocytes toward a Th2 response lead to increased hepatic fibrogenesis.

Several case reports have illustrated that, after simultaneous infection with HIV and HCV, liver failure and death may occur within 5 years. However, there is no denominator to establish an incidence rate, and at least 1 case simultaneous HIV/HCV coinfection did not lead to rapidly progressive liver disease.54

In summary, a minority of patients with HIV/HCV coinfection develop accelerated liver disease early in the course of their HIV disease, particularly when hemophilia and/or excessive alcohol use is present. In patients without hemophilia, when alcohol use is controlled for, hepatic fibrosis seems not to accelerate, at least not in patients with CD4 counts higher than 0.20 × 10⁹/L. However, cirrhosis and hepatic decompensation are increasingly found in patients with lower CD4 counts. Therefore, in patients with HIV/HCV coinfection, maintenance of CD4 lymphocyte levels must be viewed as an absolute priority.

INFLUENCE OF HCV ON HIV INFECTION

Two early studies evaluated the possible effect of HCV infection on the natural history of HIV infection.24,47

Most patients had injection drug use as a risk factor. Looking at crude survival, a study of 39 HCV RNA-positive patients found identical survival curves.24 The other study specifically considered immune parameters and found that HCV infection did not affect progression to acquired immunodeficiency syndrome.47 Three subsequent studies, from Scotland, Spain, and the United States, detected no difference in the time course of immunity markers and progression to acquired immunodeficiency syndrome in HIV-infected patients, whether HCV-positive or HCV-negative.11,65,66 Two articles described an accelerated clinical progression (including death) in coinfected patients, but declines in CD4 counts were similar in the 2 groups.67,68 Recent investigations found that HIV/HCV coinfection, under specific circumstances, may lead to faster progression to acquired immunodeficiency syndrome; these are infection with genotype 1,29 increases in HCV RNA greater than 1 log compared with baseline,69 and the development of advanced liver disease.71 In aggregate, however, the bulk of evidence suggests that HCV coinfection does not directly alter the course of HIV infection (Table 2).

SEXUAL AND PERINATAL TRANSMISSION OF HCV IN COINFECTED PATIENTS

It is known that stable partners of HCV-infected patients—in the absence of injection drug use—have a higher risk of HCV infection than partners of HCV-negative index cases.70 Human immunodeficiency virus coinfection in the index case was initially thought to enhance sexual transmission.71 However, other studies did not confirm this initial impression.72,73 Table 3 summarizes available studies illustrating that HIV coinfection does not increase the low risk of HCV sexual transmission.71-73

Pooled data from studies comparing rates of perinatal HCV transmission in both singly and coinfectcd pregnant women using HCV antibody or HCV RNA are given in Table 4.74-81 Coinfected mothers were significantly more likely to transmit HCV to their children, and

Table 2. Case-Control Studies Aimed at Assessing the Influence of HCV Infection on the Progression of HIV Disease

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study Design</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated development of AIDS in HIV/HCV coinfected patients</td>
<td>Yes</td>
<td>Sabin et al20†, Staples et al11, Wright et al24, Piroth et al67, Daar et al84‡, Haydon et al66</td>
</tr>
<tr>
<td>Reduced survival in AIDS patients with HCV coinfection</td>
<td>No</td>
<td>Piroth et al67, Ockenga et al68, Staples et al11, Wright et al44, Dorrucci et al47, Haydon et al66</td>
</tr>
</tbody>
</table>

*HCV indicates hepatitis C; HIV, human immunodeficiency virus; ellipsis, not applicable; and AIDS, acquired immunodeficiency syndrome.
†Results given for genotype 1 only.
‡Indicates patients with 1 log HCV RNA increases compared with baseline.

Table 3. Heterosexual Transmission of HCV in Patients With Definite Parenteral Risk Factors

<table>
<thead>
<tr>
<th>Index Cases</th>
<th>Heterosexual Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Anti-HCV</td>
<td>With Anti-HIV</td>
</tr>
<tr>
<td>Infection</td>
<td>2</td>
</tr>
<tr>
<td>HCV infection only (n = 52)</td>
<td>8</td>
</tr>
</tbody>
</table>

*Combined data adapted from Eyster et al,71 Soto et al,72 and Wyld et al.73 HCV indicates hepatitis C; HIV, human immunodeficiency syndrome; ellipsis, not applicable; and AIDS, acquired immunodeficiency syndrome.
†Relative risk = 1.04 (95% confidence interval, 0.9-1.2).
in at least 25% of these cases, HCV and HIV were transmitted together.78-81 Factors associated with HCV transmission from coinfected women included the following: lower maternal CD4 percentages, higher maternal HCV viremia (transmission being negligible in mothers with <5 log_{10} copies per milliliter), and infant HIV coinfection.82 Using anti-HCV as the end point and including both singly and dually infected mothers, transmission of HCV was rarer in infants born by cesarean delivery (5/79 [6%]) as opposed to vaginal delivery (34/146 [23%]); P < .01.76,79 Similar results were found when HCV RNA was used as an end point.80,81

Conversely, a study of 487 HIV-infected pregnant women demonstrated increased HIV transmission to the child (26% vs 16%) in the HCV coinfected subgroup. Moreover, women transmitting HIV had higher HCV RNA levels than those who did not.83

THERAPY OF HCV IN COINFECTED PATIENTS

Coinfected patients were excluded from placebo-controlled trials with interferon alfa treatment for chronic hepatitis C.84,85 Six studies, none placebo-controlled, are available on interferon treatment in patients with HIV/HCV.12,86-91 Both interferon alfa-2a and interferon alfa-2b were used at doses ranging from 1 million units thrice weekly84 to 9 million units daily as induction therapy87 and genotype 3a.88 Histologic improvement 1 year after the end of therapy was observed not only in responders but also in relapsers and nonresponders,92 in CD4 counts, resulting in the occurrence of opportunistic infections.97 While interferon does not affect HIV RNA levels in patients with HIV/HCV,98 concerns have been raised about its effect on tolerability of concurrent HAART.99 Weekly injections of pegylated interferon preparations may help alleviate this problem.12

There are no published articles on the long-term effect of interferon alfa and ribavirin combination therapy in coinfected patients. In HIV-negative patients, this combination is associated with a 40% sustained virological response.100 Recent abstracts suggest that approximately 50% of the patients with HIV/HHV indicate hepatitis C; HIV, human immunodeficiency syndrome; and ellipsis, not applicable.

Table 4. Perinatal Transmission of HCV

<table>
<thead>
<tr>
<th>Source, y</th>
<th>No. of Patients</th>
<th>ETR, % of Patients</th>
<th>SR, % of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyer et al,86 1992</td>
<td>12</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Marriott et al,87 1993</td>
<td>14</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Soriano et al,88 1997</td>
<td>21</td>
<td>48</td>
<td>34</td>
</tr>
<tr>
<td>Mauss et al,89 1998</td>
<td>18</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>Del Pozo et al,90 1998</td>
<td>54</td>
<td>55</td>
<td>...</td>
</tr>
<tr>
<td>Soriano et al,91 1999</td>
<td>80</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Average HIV/HCV</td>
<td>198</td>
<td>42</td>
<td>24</td>
</tr>
</tbody>
</table>
| *HIV/HCV indicates human immunodeficiency virus–hepatitis C; ETR, end-of-treatment response; SR, sustained response by alanine aminotransferase level normalization; and ellipsis, not applicable.

Table 5. Summary of the Response Rates to Interferon Monotherapy in HIV/HCV Coinfected Patients

<table>
<thead>
<tr>
<th>Source, y</th>
<th>No. of Patients</th>
<th>ETR, % of Patients</th>
<th>SR, % of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyer et al,86 1992</td>
<td>12</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Marriott et al,87 1993</td>
<td>14</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Soriano et al,88 1997</td>
<td>21</td>
<td>48</td>
<td>34</td>
</tr>
<tr>
<td>Mauss et al,89 1998</td>
<td>18</td>
<td>47</td>
<td>29</td>
</tr>
<tr>
<td>Del Pozo et al,90 1998</td>
<td>54</td>
<td>55</td>
<td>...</td>
</tr>
<tr>
<td>Soriano et al,91 1999</td>
<td>80</td>
<td>33</td>
<td>23</td>
</tr>
<tr>
<td>Average HIV/HCV</td>
<td>198</td>
<td>42</td>
<td>24</td>
</tr>
</tbody>
</table>
| *HIV/HCV indicates human immunodeficiency virus–hepatitis C; ETR, end-of-treatment response; SR, sustained response by alanine aminotransferase level normalization; and ellipsis, not applicable.

©2000 American Medical Association. All rights reserved.
HCV become HCV RNA–negative at the end of therapy.101,102 Although encouraging, these results must be tempered with concerns about the safety and tolerability of ribavirin therapy in coinfected patients.102 Anemia associated with ribavirin therapy can be successfully countered with the use of subcutaneous erythropoietin.103 Ribavirin was studied as an antiretroviral treatment and was found to be ineffective.103-108 Most studies used 600 to 800 mg/d103,108 because severe depletions of CD4 cell counts were observed with doses of 1200 to 1600 mg.103,108 This has been attributed to a direct lymphotoxic effect of ribavirin therapy.105 Finally, ribavirin may interfere with the antiretroviral effect of zidovudine, and potentiate the effect of didanosine.109

In the future, protease or helicase inhibitors, as well as antisense molecules, may prove useful as antiviral therapies.12 Ultimately, liver transplantation may be considered in selected patients; however, preliminary results show that HIV–positive patients with hemophilia have much lower survival rates (16%) than their HIV-negative counterparts (75%, $P = .02$).110

EFFECT OF ANTIRETROVIRAL TREATMENT ON HEPATITIS C

The use of HAART has reduced the occurrence of opportunistic infections and increased survival in patients with HIV.111 The effect of HAART on HCV coinfection has been described in a few patients.112-115 Two studies showed no significant alterations in serum transaminase levels and HCV viremia during HAART.114,115 Two other studies found significant increases in HCV viremia and serum transaminase levels, peaking after 4 to 6 weeks and returning to baseline between 4115 and 9 months.112 Levels of HIV RNA decreased and CD4 cell counts increased in both studies. One group115 hypothesized that a decrease in endogenous interferon activity116 occurs secondary to HIV suppression by HAART. It would follow that reduced interferon levels lead to enhanced HCV replication. Ultimately, the increase in peripheral CD4 cell counts may help restore intrahepatic immunity against hepatocyte-expressed HCV antigens, leading to higher alanine aminotransferase levels.113 Supporting this hypothesis, it was observed that hepatic necroinflammation worsened in biopsy specimens performed 1 to 2 months after starting HAART.112 In addition, 14% (7/51) of patients treated with protease inhibitors developed hepatic decompensation compared with only 3% (4/148) of patients who were not treated with protease inhibitors.112 In another study of 187 patients, 2% developed liver failure after 1 month of HAART.117 Several additional reports of liver injury occurring during HAART have been published recently, not exclusively in patients with HCV.118-125 A recent prospective study found that regimens containing ritonavir were much more likely to induce severe (ie, alanine aminotransferase levels >5 times above the upper limit of normal) hepatotoxicity than regimens with nucleoside analogs.123 Two cases of severe hepatotoxicity occurred every 100 patient-months while receiving the latter regimens, compared with 3.3 episodes per 100 patient-months with any protease inhibitor–containing regimen.123 Ritonavir-containing combinations were associated with 6 episodes per 100 patient-months.

Some of the reported cases of drug-induced hepatotoxicity revealed histologic features of drug toxicity (eosinophilic infiltration, microvesicular steatosis), but some also showed evidence of chronic viral hepatitis with or without fibrosis.118-124 In summary, HAART must be administered cautiously, and liver function should be monitored in all patients, in particular those with chronic liver disease due to hepatitis C.

OTHER MANAGEMENT ISSUES

Patients with HCV, particularly those with advanced disease, may be more susceptible to liver damage caused by hepatitis A.126 However, this is still controversial, as other groups have not confirmed this finding.127 Hepatitis A vaccination in HIV-positive patients yields an 88% antibody response rate, has no adverse effects on immunological parameters,128 and may be indicated in patients with hepatic fibrosis or cirrhosis, regardless of origin.

Similarly, hepatitis B is associated with more advanced liver disease in patients with chronic hepatitis C.3-5 Patients with HIV/HCV coinfection and a negative anti–hepatitis B core antibody should be considered for hepatitis B vaccination, although a serological response is substantially less frequent (about 50%) than in immunocompetent hosts.43 Hepatitis B vaccination in patients with HIV has been associated with a small increase in HIV load and a decrease in CD4 cell counts—both transient.129 Since alcohol intake accelerates the course of hepatitis C,2,5,36,61 alcohol and alcohol withdrawal results in increased CD4 cell counts.130 Patients with HIV infection and chronic hepatitis C should be advised to completely abstain from it.

CONCLUSIONS

We believe that liver disease associated with HCV will become more clinically significant in patients with HIV. Coinfection leads to earlier and more severe liver disease, including hepatocellular carcinoma. In most instances, HCV infection does not seem to markedly alter the natural history of HIV disease. The HIV/HCV coinfection in pregnant women increases the risk of perinatal HCV transmission 2-fold, with more than 25% of occurrences involving transmission of both viruses; cesarean delivery significantly decreases this risk.

The management of patients with HIV/HCV includes the elimination of alcohol. Therapy with combined interferon and ribavirin should be considered, particularly in patients with higher CD4 cell counts, lower HCV viremia, and non-1 genotype. During treatment, complete blood cell counts need to be closely followed up. Future controlled trials will determine the efficacy and safety of long-acting interferon preparations alone or combined with ribavirin. The administration of HAART, with the intent to prevent declines in CD4 cell counts, seems crucial in stemming liver disease progression. However, some drugs have clear-cut hepatotoxic poten-
tial and patients with known liver disease should be closely moni-

tored.

Accepted for publication September 15, 2000.

Corresponding author: Mauri-

zio Bonacini, MD, Keck School of Medicine at the University of South-

ern California, Hoffman Medical Re-

search Bldg 101, 111 Zonal Ave, Los Angeles, CA 90033.

REFERENCES

1. Seeff LB. Natural history of hepatitis C. Hepa-

2. Peyraud T, Bedossa P, Opolon P. Natural his-

tory of liver fibrosis progression in patients with chronic

3. Dieniatti A, Ghezzi A, Rossi S, et al. The occur-

rence of liver failure in human immunodefi-

ciency virus (HIV) infected patients is related to

HBsAg positivity and alcohol abuse [abstract].

Hepatology. 1997;26:604A.

4. McEunen EB, Hillan KJ, McKay IC, Cassidy MT,

Clark JC. Hepatitis virus infection and liver dis-

ease in injecting drug users who died suddenly.

5. Roudot-Thoroval F, Bastie A, Pawlotsky JM,

Dhumeaux D, and the Study Group for the Preva-

lence and the Epidemiology of Hepatitis C. Epi-

demiological factors affecting the severity of hepa-

titis C virus-related liver disease & French survey

tor for development of cirrhosis in parenterally

acquired chronic hepatitis C: a comparison be-

tween immunocompetent and immunoconnos-

7. Tong MJ, El-Farra NS, Reikes AR, Co RL. Clin-

cial outcomes after transfusion-associated hep-

Hepatitis C viremia in human immunodefi-

ciency virus-seronegative and -seropositive pa-

tients with undetermined HCV recombinant immu-

9. Bonacini M, Lin HJ, Hollinger FB. Prevalence of

HCV RNA in HIV-infected patients [abstract]

10. John M, Flexman J, French MAH. Hepatitis C vi-

rus-associated hepatitis in HIV-infected patients.

Hepatology. 1997;26:604A.

virus replication in lymphoid tissue in patients co-

infected with human immunodeficiency virus type

that both HIV and hepatitis C virus-induced immu-

deficiency enhance HCV replication among HCV se-

P, Conrad A, Lindsay K. Patients coinfected with

human immunodeficiency virus demonstrate

higher levels of hepatic HCV RNA. J Viral Hepa-

14. Eyster ME, Diamondstone LS, Lien JM, Ethann

C, Quan S, Goeort J. Natural history of hepa-

titis C virus infection in multitransfused hemo-

philics: effect of coinfection with human im-

munodeficiency virus. J Acquir Immune Defic

15. Mazza C, Puoti M, Ravaggi A, Castelnuovo F, Al-

bertini A, Cariani E. Molecular analysis of mixture

infection with HIV-1 and hepatitis C virus in a patient

taneous transmission of human immunodefi-

ciency virus and hepatitis C from a needle-stick

titis C quantification and sequencing in blood

products, haemophiliacs, and drug users. Lan-

Hepatitis C viremia in human immunodefi-

ciency virus-seronegative and -seropositive pa-

tients with undetermined HCV recombinant immu-

HCV RNA in HIV-infected patients [abstract]

20. John M, Flexman J, French MAH. Hepatitis C vi-

rus-associated hepatitis in HIV-infected patients.

Hepatology. 1997;26:604A.

partial virological suppression in HIV-infected

patients with HIV protease inhibitors: an immu-

22. Pawlotsky JM. Measuring hepatitis C viremia in

human immunodeficiency virus infection on hepatitis C virus.

23. Davis GL, Lau JYN, Urdea MS, et al. Quantita-

tive detection of hepatitis C virus RNA with a solid-

phase signal amplification method: definition of optimal conditions for specimen collection and

clinical application in interferon-treated pa-

24. Wright TL, Hollander H, Pu X. Hepatitis C in HIV-

infected patients with and without AIDS: preva-

lence and relationship to survival. Hepatology.

25. Telfer P, Sabin C, Devereux H, Scott F, Dusheiko

G, Lee C. The progression of HCV-associated liver

disease in a cohort of haemophilic patients. Br J

Haematol. 1994;88:397-399.

26. Eyster ME, Fried MW, Di Bisceglie AM, Goedert

JJ, for the Multicenter Hemophilia Cohort Study.

Increasing hepatitis C virus RNA levels in he-

mophils: relationship to HIV infection and liver

27. Ghany MG, Leissenger C, Lagier R, Sanchez-

Pescador R, Lok AS. Effect of human immu-

nodeficiency virus infection on hepatitis C virus

infection in hemophiliacs. Dig Dis Sci. 1996;41:

1265-1272.

28. Cribier B, Rey D, Schmitt C, Lang JM, Kirn A,

Stoll-Keller F. High hepatitis C virus viremia and im-

paired antibody response in patients coinfected

29. Sabin CA, Telfer P, Phillips AN, Bhagari S, Lee

CA. The association between hepatitis C virus

genoype and human immunodeficiency virus

disease progression in a cohort of hemophilic

30. Chambost H, Gerolami V, Halton P, et al. Per-

sistent hepatitis C virus RNA replication in hepa-

mophils: role of coinfection with human im-

munodeficiency virus. Br J Haematol. 1995;91:

703-707.

31. Sherman KE, O’Brien J, Gutierrez AR, et al. Quan-

titative evaluation of hepatitis C virus RNA in pa-

tients with concurrent human immunodefi-

ciency virus infection. J Clin Microbiol. 1993;

31:2679-2682.

32. Rockstroh JK, Spengler U, Sudhop T, et al. Im-

munosuppression may lead to progression of

hepatitis C virus-associated liver disease in a cohort of haemophilic patients. Br J

Haematol. 1994;87:555.

33. Fattovich G, Giustina G, Degos F, et al. Morbid-

ity and mortality in compensated cirrhosis type

C. A retrospective follow-up study of 384 pa-

(Reprinted) ARCH INTERN MED/ VOL 160, DEC 11/25, 2000 WWW.ARCHINTERNMED.COM 3371

©2000 American Medical Association. All rights reserved.

Downloaded From: by a Non-Human Traffic (NHT) User on 01/02/2019

Call for Papers: Genetic Theme Issue

The November 2001 issue of the *Archives of Internal Medicine* will join *JAMA* and the family of *Archives* journals in publishing a theme issue on human genomics and genetics. This is a critical topic that includes diagnosis of genetic diseases, gene therapy, genetic screening and counseling, ethical issues, confidentiality, and the care of patients and families with inherited diseases.

We welcome manuscripts for consideration in this issue. Papers received by March 1, 2001, will have the best chance of inclusion.

James E. Dalen, MD, MPH

Editor