Gallstone Disease and Related Risk Factors in Patients With Crohn Disease

Analysis of 330 Consecutive Cases

Mirella Fraquelli, MD, PhD; Alessandra Losco, MD; Stefania Visentin, MD; Bruno Mario Cesana, MD; Roberta Pometta, MD; Agostino Colli, MD; Dario Conte, MD

Background: The reported prevalence of gallstone disease (GD), defined as current gallstones or previous cholecystectomy for gallstones, in patients with Crohn disease ranges from 13% to 34%. The aim of this study was to characterize the still undefined risk factors of this complication.

Methods: A total of 330 consecutive patients with Crohn disease (189 males and 141 females aged 17-82 years, mean±SD age, 41±14 years) underwent liver ultrasonography.

Results: A diagnosis of GD was made in 78 patients (24%), 54 with current gallstones and 24 who had undergone previous cholecystectomy. Its frequency was comparable in males and females (23% vs 25%), but was significantly associated with age (P=.001), being 13%, 36%, and 51% in patients aged 44 years and younger, 45 to 59 years, and 60 years and older, respectively (P=.001). Its prevalence significantly differed according to the site of the disease at diagnosis (P=.02) and was unrelated to disease duration. Gallstone disease was more frequent in patients who had undergone surgery (34% vs 14%; P=.001) and was significantly associated with the number (P=.001) and site of bowel resections (P=.001), increasing from 28% in the patients who had undergone 1 resection to 53% in those having had 2 or more resections (P=.005) and being significantly higher in patients with a resection involving the ileocecal region. Multivariate analysis showed that age, site of disease at diagnosis, and the presence, number, and site of bowel resections were significantly related to GD.

Conclusions: In patients with Crohn disease, the frequency of GD is significantly higher than that reported in the general population with comparable characteristics (z=5.04, P<.001). Age, site of disease at diagnosis, and the history, number, and site of bowel resections are independently associated with GD.

Arch Intern Med. 2001;161:2201-2204
PATIENTS AND METHODS

From January 1 to December 31, 1999, all consecutive inpatients and outpatients attending the referral center for Crohn disease at Milan (Italy) University's Postgraduate School of Gastroenterology gave their written informed consent to the study, which was approved by the Ethics Committee of IRCCS Ospedale Maggiore, Milan. In the case of the 301 patients with certain Crohn disease, the presence of cholelithiasis had already been demonstrated by US before laparotomy and 10 of these patients had been operated on during the course of laparotomy for intestinal and/or colonic resections. In the last group of 16 patients, the presence of cholelithiasis had already been demonstrated by US before laparotomy and 10 of these patients had experienced biliary colic(s) within 3 to 10 months before the surgical procedure, which was performed for symptoms related to the intestinal involvement.

The results of the univariate analysis are given in Table 1, which shows the variables that were significantly associated with GD. The prevalence of GD was similar in male and female patients (23% vs 25%) and showed a significant age-related linear increase, being 13%, 36%, and 51% in the patients 44 years and younger, 45 to 59 years, and 60 years and older, respectively (P < .001). It was also significantly associated with the location of Crohn disease at diagnosis (P = .02), but not with disease duration (P = .36), body mass index (22.3 ± 2.07 in the patients with GD and 22.3 ± 2.04 in those without; P = .89), or the presence of liver steatosis (20% in patients with GD and 12% in those without; P = .10). None of the patients with GD, but 8% of those without GD, showed the concomitant presence of nephrolithiasis. Gallstone disease was more frequent in patients who had undergone surgery (34% vs 14%; P = .001) and increased linearly with the number of resections, being significantly higher in the patients who had undergone 2 or more resections (53% vs 28%; P = .005).

As shown in Table 2, multivariate analysis showed that age class, the site of Crohn disease at diagnosis, and a history of previous bowel resections were independently associated with GD in our first model. In a second multivariate model (which included the number of bowel resections), the odds ratios for age and site of bowel disease at diagnosis remained substantially unchanged. Finally, when the site of bowel resections was considered, only age and the site of resection were independently associated with GD. The goodness of fit was checked by means of the Hosmer-Lemeshow test and the analysis of residuals. Prevalence and odds ratios were calculated with their 95% confidence intervals. The prevalence of GD in our series was compared with that in the general population by means of a z test. P < .05 was considered statistically significant.

The prevalence of GD in the present large series of patients with Crohn disease was significantly higher than that observed in a nationwide epidemiological study of patients having previously undergone cholecystectomy (31%), 3 had had emergency laparotomy for acute cholecystitis and 5 for recurrent biliary colic, and the remaining 16 had been operated on during the course of laparotomy for intestinal and/or colonic resections. In the last group of 16 patients, the presence of cholelithiasis had already been demonstrated by US before laparotomy and 10 of these patients had experienced biliary colic(s) within 3 to 10 months before the surgical procedure, which was performed for symptoms related to the intestinal involvement.

The results of the univariate analysis are given in Table 1, which shows the variables that were significantly associated with GD. The prevalence of GD was similar in male and female patients (23% vs 25%) and showed a significant age-related linear increase, being 13%, 36%, and 51% in the patients 44 years and younger, 45 to 59 years, and 60 years and older, respectively (P < .001). It was also significantly associated with the location of Crohn disease at diagnosis (P = .02), but not with disease duration (P = .36), body mass index (22.3 ± 2.07 in the patients with GD and 22.3 ± 2.04 in those without; P = .89), or the presence of liver steatosis (20% in patients with GD and 12% in those without; P = .10). None of the patients with GD, but 8% of those without GD, showed the concomitant presence of nephrolithiasis. Gallstone disease was more frequent in patients who had undergone surgery (34% vs 14%; P = .001) and increased linearly with the number of resections, being significantly higher in the patients who had undergone 2 or more resections (53% vs 28%; P = .005).

As shown in Table 2, multivariate analysis showed that age class, the site of Crohn disease at diagnosis, and a history of previous bowel resections were independently associated with GD in our first model. In a second multivariate model (which included the number of bowel resections), the odds ratios for age and site of bowel disease at diagnosis remained substantially unchanged. Finally, when the site of bowel resections was considered, only age and the site of resection were independently associated with GD. The goodness of fit was checked by means of the Hosmer-Lemeshow test and the analysis of residuals. Prevalence and odds ratios were calculated with their 95% confidence intervals. The prevalence of GD in our series was compared with that in the general population by means of a z test. P < .05 was considered statistically significant.

The prevalence of GD in the present large series of patients with Crohn disease was significantly higher than that observed in a nationwide epidemiological study of patients having previously undergone cholecystectomy (31%), 3 had had emergency laparotomy for acute cholecystitis and 5 for recurrent biliary colic, and the remaining 16 had been operated on during the course of laparotomy for intestinal and/or colonic resections. In the last group of 16 patients, the presence of cholelithiasis had already been demonstrated by US before laparotomy and 10 of these patients had experienced biliary colic(s) within 3 to 10 months before the surgical procedure, which was performed for symptoms related to the intestinal involvement.

The results of the univariate analysis are given in Table 1, which shows the variables that were significantly associated with GD. The prevalence of GD was similar in male and female patients (23% vs 25%) and showed a significant age-related linear increase, being 13%, 36%, and 51% in the patients 44 years and younger, 45 to 59 years, and 60 years and older, respectively (P < .001). It was also significantly associated with the location of Crohn disease at diagnosis (P = .02), but not with disease duration (P = .36), body mass index (22.3 ± 2.07 in the patients with GD and 22.3 ± 2.04 in those without; P = .89), or the presence of liver steatosis (20% in patients with GD and 12% in those without; P = .10). None of the patients with GD, but 8% of those without GD, showed the concomitant presence of nephrolithiasis. Gallstone disease was more frequent in patients who had undergone surgery (34% vs 14%; P = .001) and increased linearly with the number of resections, being significantly higher in the patients who had undergone 2 or more resections (53% vs 28%; P = .005).

As shown in Table 2, multivariate analysis showed that age class, the site of Crohn disease at diagnosis, and a history of previous bowel resections were independently associated with GD in our first model. In a second multivariate model (which included the number of bowel resections), the odds ratios for age and site of bowel disease at diagnosis remained substantially unchanged. Finally, when the site of bowel resections was considered, only age and the site of resection were independently associated with GD. The goodness of fit was checked by means of the Hosmer-Lemeshow test and the analysis of residuals. Prevalence and odds ratios were calculated with their 95% confidence intervals. The prevalence of GD in our series was compared with that in the general population by means of a z test. P < .05 was considered statistically significant.
The prevalence of gallstone disease (GD) in 330 consecutive patients with Crohn disease is shown in Table 1. The odds ratios (95% confidence intervals) for GD are presented in Table 2. The presence of gallstones in patients with Crohn disease is associated with age, the site of the disease at diagnosis, and the number of bowel resections. The risk of GD is significantly higher in patients with ileocecal or colonic disease at diagnosis compared to those with ileal disease. Furthermore, the risk of GD increases with age, and the risk is significantly higher in patients who have undergone bowel resection compared to those who have not. The relationship between the prevalence of GD and patient sex was not significant, but the data suggest a trend towards higher prevalence in male patients.

The general population involving 29,684 subjects with comparable demographic characteristics in whom the overall prevalence of GD was 13.8% (9.5% in males and 18.9% in females). Regardless of patient sex, the frequency of GD significantly increased with age, and was significantly higher than that reported in comparable age groups from the general population (17%, 28%, and 61% vs 11%, 20%, and 30% in females; 10%, 43%, and 46% vs 4%, 11%, and 17% in males). It is interesting to note that this difference was mainly due to the 3- to 2-fold higher frequency in male patients 44 years and younger and female patients 60 years and older. This finding is even more striking considering the female-male ratio of GD; in the 3 age groups, it decreased from 2.56 to 1.93 and 1.72 in the reference population and from 1.70 to 0.64 and 1.33 in patients with inflammatory bowel disease, which thus represents a per se relevant risk factor for gallstones and significantly reduces the sex-related difference in the frequency of GD.

Another interesting finding of the present study is the lack of a relationship between the prevalence of GD and body mass index, a factor that has previously been shown to have a significant effect on the prevalence of GD in the general population. The lack of a relationship between the prevalence of GD and patient sex was not significant, but the data suggest a trend towards higher prevalence in male patients.

Unlike results reported by Hutchinson et al and Lapidus et al, the present findings indicate that the location of Crohn disease is independently associated with gallstones. The relevance of an ileocecal or colonic location in our series is in agreement with the data from Kangas et al relating to 52 patients with Crohn disease who had already undergone surgery. On the contrary, in another Italian study, the highest risk for GD was observed in patients with small bowel involvement limited to the terminal ileum, but this study involved only 45 patients with Crohn disease, 10 of whom had colonic involvement alone.

Other studies have previously shown that disease duration is an important risk factor for GD in patients with Crohn disease. In the study by Hutchinson et al of 251 patients, the prevalence of GD significantly increased with disease duration, approaching 50% after a duration of more than 30 years. Our data failed to confirm this association but the median disease duration in our study was 8 years compared with 19 years in the British series.

In agreement with the findings of others, our data indicate that previous surgery and the number of resections are significantly associated with GD in patients with Crohn disease; we have also shown that a resection involving the ileocecal region is more frequently associated with gallstones. This could be explained in various ways: the interruption of the enterohepatic circulation of bile salts and the consequent hepatic excretion of bile with an increased proportion of cholesterol, and/or the reduction in small intestine transit time. The first mechanism has been accepted for a long time, but recent animal and human data indicate that the excretion of supersaturated bile in patients with a diseased or resected terminal ileum is only transient, and a recent study found a significantly lower cholesterol saturation in patients with Crohn disease than in healthy subjects. Furthermore, as reported in patients undergoing major abdominal or cardiac surgery, it may also be due to the interruption of the enterohepatic circulation of bile salts and the consequent hepatic excretion of bile with an increased proportion of cholesterol.
to a prolonged fasting state and/or the use of total parenteral nutrition, both of which can induce the biliary sludge that represents a prerequisite for gallstone formation. A further contributory role in GD formation could be played by reduced gallbladder motility; we did not specifically investigate this aspect, but there is evidence of impaired fatty-meal–induced gallbladder motility in patients with ileal and ileocolonic disease. An other possibility is a decreased release and/or hypersecretion of hormones stimulating (eg, cholecystokinin) or inhibiting (eg, somatostatin) gallbladder contractility, as we have recently reported in patients with celiac disease.

We also observed that patients with colonic involvement or resection had an increased risk for GD. In this context, various data indicate that the enrichment of bile with deoxycholic acid (the typical colonic bile acid) leads to increased cholesterol levels that favor gallstone formation.

Overall, in the present large series of patients with Crohn disease, the prevalence of GD is significantly higher than that observed in a general population with comparable demographic characteristics. Age, the site of disease at diagnosis, and the number and site of previous resections were all independently associated with GD, the pathogenesis of which is multifactorial.

Accepted for publication February 12, 2001.

We thank the Associazione Amici della Gastroenterologia del Granelli for its continuing support and the CARIPO Foundation for a special grant.

Corresponding author and reprints: Dario Conte, MD, Cattedra di Gastroenterologia, Padiglione Granelli 3° Piano, IRCCS Ospedale Maggiore, Via F. Sforza 33, 20122 Milan, Italy (e-mail: dario.conte@unimi.it).

REFERENCES