Phosphodiesterase Type 5 Inhibition Is a Novel Therapeutic Option in Raynaud Disease

Evren Caglayan, MD; Michael Huntgeburth, MD; Thomas Karasch, MD; Julia Weihrach, MD; Nicolas Hunzelmann, MD; Thomas Krieg, MD; Erland Erdmann, MD; Stephan Rosenkranz, MD

Background: Raynaud disease (RD) is a common disorder affecting 3% to 5% of the healthy population, and occurs in more than 90% of patients with connective tissue diseases. The therapeutic options remain limited, particularly in patients with secondary RD due to connective tissue disease. Theoretical considerations lead to the expectation that phosphodiesterase type 5 inhibitors may improve clinical symptoms and digital blood flow in patients with RD.

Methods: We conducted an open-label pilot study in 40 patients with RD, 33 (82%) of whom had secondary and 7 (18%) of whom had primary RD. Digital blood flow was measured by laser-Doppler flowmetry at room temperature and during the cold-exposure test before medical treatment, 1 hour after the initial intake, and after 2 weeks of continuous treatment (10 mg twice a day) with the novel phosphodiesterase type 5 inhibitor vardenafil. Clinical symptoms were recorded by a patient questionnaire and summarized as the Raynaud condition score.

Results: Laser-Doppler flowmetry revealed that vardenafil improved digital blood flow in 28 (70%) patients, whereas 12 (30%) did not respond. In individuals responding, digital blood flow significantly increased by a mean±SEM of 21.0%±4.9% and 30.0%±5.7% at 1 hour and 2 weeks of treatment at room temperature, respectively, and by 18.8%±4.4% and 35.1%±7.5% at 1 hour and 2 weeks during the cold-exposure test, respectively (P＜.01 for all). Consistently, clinical symptoms improved in 27 (68%) of the 40 patients, and the Raynaud condition score declined from a mean±SEM of 5.05±0.38 to 3.54±0.31 (P＜.001).

Conclusion: Our data indicate that phosphodiesterase type 5 inhibition significantly improves peripheral blood flow and clinical symptoms in a large subset of patients with RD and, thus, may provide a novel therapeutic approach in such individuals.

Arch Intern Med. 2006;166:231-233

Author Affiliations: Klinik III für Innere Medizin (Drs Caglayan, Huntgeburth, Karasch, Erdmann, and Rosenkranz) and Klinik und Poliklinik für Dermatologie (Drs Weihrach, Hunzelmann, and Krieg), Universität zu Köln, Köln, Germany.
tivc potential of PDE5 inhibitors in patients with RD may indeed be expected. Therefore, we conducted an open-label pilot study, in which we investigated the effects of the novel PDE5 inhibitor vardenafil on clinical symptoms and peripheral blood flow in patients with RD of various causes.

METHODS

Forty patients (3 men and 37 women; mean ± SEM age, 49 ± 13 years) with a definite diagnosis of RD (typical clinical symptoms, impaired digital blood flow, and history of RD-related attacks for at least 1 year) were included. The study was approved by the local ethics committee, and written informed consent was obtained from each patient. All vasoactive agents (eg, CCBs and nitrates) were discontinued at least 1 week before study inclusion. Vardenafil, 10 mg twice a day, was administered over 2 weeks. Peripheral blood flow in the index finger was measured by laser-Doppler flowmetry after adjustment to room temperature (24°C) at time point 0 (baseline), 1 hour after the initial intake, and after 2 weeks of continuous therapy. Measurements were repeated during a cold-exposure test (CET) at 4°C, and nail fold capillary microscopy was also performed for each condition. All measurements were made in a fasting state at the same time of day. The frequency, total daily duration, and severity of RD-related attacks were recorded by a patient questionnaire and summarized as the Raynaud condition score (RCS). Based on the previously described conditions, patients were asked to rate the difficulty they had with their RD on a scale ranging from 0 (none) to 10 (very severe) on each day throughout the study period. A detailed description of the questionnaire and the RCS is given by Black et al.9

All data are expressed as mean ± SEM. Statistical analysis of the mean intradividual percentage change of digital blood flow ([treatment/basal − 1] × 100%) was assessed by the 2-tailed 1-sample t test with Bonferroni correction (adjusted α = .025, vs 0). The mean absolute change of the RCS was analyzed by a 2-tailed paired-sample t test (α = .05). Statistical evaluation was performed using a commercially available software program (SPSS, 10.0 for Windows; SPSS Inc, Chicago, Ill).

RESULTS

Of the 40 patients enrolled, 7 (18%) had primary RD (no history or physical findings suggestive of a secondary cause, healthy nail fold capillaries, and negative test results for specific autoantibodies) and 33 (82%) had secondary RD (clinical features suggestive of a connective tissue disease, enlarged and disarranged and/or decreased number of capillary loops and/or hemorrhages on nail fold capillary microscopy, and presence of specific autoantibodies). Twelve patients (30%) were smokers, whereas 28 (70%) were nonsmokers. All smokers abstained from smoking at least 12 hours before testing. Laser-Doppler flowmetry revealed improved digital blood flow during vardenafil treatment in 28 (70%) patients, whereas 12 (30%) did not respond to therapy. When all patients were pooled, laser-Doppler measurements showed a tendency toward increased digital blood flow at room temperature at 1 hour (9.9% ± 4.4%) and 2 weeks (12.9% ± 5.5%) of vardenafil treatment compared with baseline values (P = .03 for both) (Figure, A). During the CET, however, vardenafil significantly increased blood flow by 11.0% ± 3.7% at 1 hour (97.5% confidence interval [CI], 2.2% - 19.9%) and by 19.7% ± 6.6% (97.5% CI, 4.1% - 35.4%) at 2 weeks (P < .01 vs baseline for both) (Figure, B). In patients responding to vardenafil (n = 28), there was a highly significant increase of digital blood flow at room temperature and during the CET at both time points: room temperature, 21.0% ± 4.9% (97.5% CI, 8.8% - 33.1%) at 1 hour and 30.0% ± 5.7% (97.5% CI, 16.2% - 43.8%) at 2 weeks (Figure, C); CET, 18.8% ± 4.4% (97.5% CI, 8.0% - 29.5%) at 1 hour and 35.1% ± 7.5% (97.5% CI, 16.9% - 53.2%) at 2 weeks (Figure, D) (P < .01 vs baseline for all). As expected, capillary microscopy showed no differences during the 2-week observation periods. Consistent with the improvement of digital blood flow in 28 (70%) of the patients, 27 (68%) reported a distinct improvement of clinical symptoms due to RD. Twenty-four (60%) of the 40 patients reported a reduction of the total daily duration of RD-related attacks, and the number and severity of attacks were reduced in 50% (20/40) and 53% (21/40) of patients, respectively. Consequently, the RCS of all patients significantly decreased from 5.05 ± 0.38 during the 7 days before treatment to 3.54 ± 0.31 during the second week of vardenafil therapy (P < .001) (Figure, E), resulting in a decrease of 1.51 ± 0.29 (95% CI, 0.91 - 2.11).

Vardenafil treatment caused a modest decrease of systolic blood pressure and had no effect on heart rate. No severe adverse events (symptomatic hypotension, myocardial infarction, stroke, or death) were recorded, and the
typical adverse effects of PDE5 inhibitors occurred at the expected frequencies. Eight patients (20%) experienced headaches; 6 (15%), flush; 4 (10%), dyspepsia; 3 (8%), running nose; 3 (8%), visual abnormalities; and 1 (2%), ischemia of the index finger. Treatment was prematurely discontinued in the patient with severe ischemia of the index finger.

These data demonstrate that PDE5 inhibition by vardenaﬁl signiﬁcantly improved digital blood ﬂow in patients with RD within 1 hour, and this effect persisted throughout the observation period of 2 weeks, suggesting a novel indication for PDE5 inhibitors in clinical practice. The CET was able to identify individuals who are likely to respond to vardenafil. When compared with other studies, the response rate and therapeutic efﬁcacy of vardenafil were at least equal to those of established agents, such as CCBs. Two recent meta-analyses revealed that the therapeutic effects of CCBs in patients with RD are rather moderate. A mean reduction of 2.8 to 5.0 attacks per week and a 33% reduction in severity were observed in primary RD, and a mean reduction of 8.3 attacks in 2 weeks and 35% less severity were observed in patients with RD secondary to SSc.9,10 In the present study, 68% of the patients reported a signiﬁcant improvement of clinical symptoms on vardenafil treatment, which was due to a reduction of the duration, frequency, and severity of attacks. As a result, the RCS signiﬁcantly declined from 3.05 ± 0.38 to 3.54 ± 0.31. More important, the improvement of clinical symptoms, which was observed in most patients, was conﬁrmed by objective measurement of digital blood ﬂow in each patient, using laser-Doppler ﬂowmetry. This seems particularly promising because most patients (82%) had secondary RD, mostly due to SSc, which is particularly difﬁcult to treat.

In contrast to a recent study demonstrating that sildenafil improved endothelial dysfunction only in nonsmoking individuals, we found no difference in the response rates of smokers (8 [67%] of 12) vs nonsmokers (20 [71%] of 28) on digital blood ﬂow and clinical improvement of RD. Furthermore, the response rates of patients with primary (6 [86%] of 7) or secondary (21 [64%] of 33) RD to vardenafil treatment were quite similar. Thus, the reason for the failure of some patients to respond to vardenafil, while others responded quite well, remains unclear.

Within the study period of 2 weeks, no severe adverse events occurred. This is consistent with previous reports demonstrating that long-term treatment with PDE5 inhibitors is not associated with increased cardiovascular risk or mortality. The frequencies of other adverse events (headache, flush, dyspepsia, running nose, and visual abnormalities) were within the range that was previously reported for PDE5 inhibitors, and did not exceed the frequency of adverse effects during the standard therapy with CCBs. In one patient, vardenafil treatment was prematurely stopped because of severe ischemia of the index ﬁnger; however, a causal relationship was not proved and, based on much literature on PDE5 inhibitors, this case should be considered a coincidence. Because PDE5 inhibitors and CCBs exert their vasodilative properties through distinct mechanisms, it can be speculated that combination therapy with these agents may enhance the therapeutic effect. Such a combination seems to be safe because no increase of adverse events was observed during the concomitant intake of PDE5 inhibitors and antihypertensive agents, including CCBs.

In summary, our ﬁndings indicate that PDE5 inhibitors like vardenafil signiﬁcantly improve peripheral blood ﬂow and clinical symptoms in a large subset of patients with RD and, thus, may provide a novel therapeutic approach in such individuals. Based on these ﬁndings, a placebo-controlled trial and a comparison and/or combination with established medications (eg, CCBs) are highly warranted.

Accepted for Publication: August 9, 2005.

Correspondence: Stephan Rosenkranz, MD, Klinik III fur Innere Medizin, Universita¨t zu Ko¨ln, Kerpener Strasse 62, 50924 Ko¨ln, Germany (stephan.rosenkranz@uk-koeln.de).

Author Contributions: Dr Rosenkranz had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosure: None.

Funding/Support: This study was supported by a research grant from Bayer Vital GmbH, Leverkusen, Germany.

Role of the Sponsor: The funding body had no role in data extraction and analyses, in the writing of the manuscript, or in the decision to submit the manuscript for publication.

Acknowledgment: We thank Martin Hellmich, MD, Institute of Medical Statistics, Informatics and Epidemiology, Universita¨t zu Ko¨ln, for statistical evaluation of the data.