Sudden Death in Patients With Cardiac Implantable Electronic Devices

Zian H. Tseng, MD, MAS; Robert M. Hayward, MD; Nina M. Clark, BS; Christopher G. Mulvanny, MS; Benjamin J. Colburn, BA, BS; Philip C. Ursell, MD; Jeffrey E. Olgin, MD; Amy P. Hart, MD; Ellen Moffatt, MD

IMPORTANCE Interrogations and autopsies of sudden deaths with cardiac implantable electronic devices (CIEDs) are rarely performed. Therefore, causes of sudden deaths with these devices and the incidence of device failure are unknown.

OBJECTIVE To determine causes of death in individuals with CIEDs in a prospective autopsy study of all sudden deaths over 35 months as part of the San Francisco, California, Postmortem Systematic Investigation of Sudden Cardiac Death (POST SCD) study.

DESIGN, SETTING, AND PARTICIPANTS Full autopsy, toxicology, histology, and device interrogation were performed on incident sudden cardiac deaths with pacemakers or implantable cardioverter defibrillators (ICDs). The setting was the Office of the Chief Medical Examiner, City and County of San Francisco. Participants included all sudden deaths captured through active surveillance of all deaths reported to the medical examiner and San Francisco residents with an ICD (January 1, 2011, to November 30, 2013).

MAIN OUTCOMES AND MEASURES Identification of a device concern in sudden deaths with CIEDs, including hardware failures, device algorithm issues, device programming issues, and improper device selection. For the ICD population, outcomes were the cumulative incidence of death and sudden cardiac death and the proportion of deaths with an ICD concern.

RESULTS Twenty-two of 517 sudden deaths (4.3%) had CIEDs, and autopsy revealed a noncardiac cause of death in 6. Six of 14 pacemaker sudden deaths and 7 of 8 ICD sudden deaths died of ventricular tachycardia or ventricular fibrillation. Device concerns were identified in half (4 pacemakers and 7 ICDs), including 3 hardware failures contributing directly to death (1 rapid battery depletion with a sudden drop in pacing output and 2 lead fractures), 5 ICDs with ventricular fibrillation undersensing, 1 ICD with ventricular tachycardia missed due to programming, 1 improper device selection, and a pacemaker-dependent patient with pneumonia and concern about lead fracture. Of 712 San Francisco residents with an ICD during the study period, 109 died (15.3% cumulative 35-month incidence of death), and the 7 ICD concerns represent 6.4% of all ICD deaths.

CONCLUSIONS AND RELEVANCE Systematic interrogation and autopsy of sudden deaths in one city identified concerns about CIED function that might otherwise not have been observed. Current passive surveillance efforts may underestimate device malfunction. These methods can provide unbiased data regarding causes of sudden death in individuals with CIEDs and improve surveillance for CIED problems.

Published online June 22, 2015.

Copyright 2015 American Medical Association. All rights reserved.
More than 3 million people in the United States have a permanent pacemaker (PPM) or implantable cardioverter defibrillator (ICD). These devices have saved the lives of innumerable patients and have improved the lives of many more. Currently, surveillance for cardiac implantable electronic device (CIED) malfunctions is based on the US Food and Drug Administration-mandated Manufacturer and User Facility Device Experience (MAUDE) database, which is mandatory for manufacturers but voluntary for healthcare professionals. Food and Drug Administration adverse event reporting regulations require that manufacturers and facilities such as hospitals report when they learn that a device may have caused or contributed to a death or serious injury (21 CFR §803). Events in deceased patients are not excluded; however, because more than 90% of sudden cardiac deaths (SCDs) occur outside of the hospital and because investigation after such sudden death is not a routine medical examiner or coroner practice, interrogations and autopsies of SCDs with pacemakers and ICDs are rarely performed. Deaths in those with CIEDs that occur outside of care facilities or that are unknown to the manufacturer are at particularly high risk to be uninvestigated or unreported to the Food and Drug Administration MAUDE database, and rates of CIED failure that lead to sudden death are unknown. We sought to determine causes of SCDs with CIEDs in an ongoing prospective autopsy study of all incident SCDs in San Francisco, California.

Methods

Medical Examiner Evaluation

From January 1, 2011, to November 30, 2013, as part of the final month of the pilot study (January 1 to January 31, 2011) and the first 34 months of the San Francisco Postmortem Systematic Investigation of Sudden Cardiac Death (POST SCD) study (February 1, 2011, to November 30, 2013), autopsies were performed on 499 of 517 (96.5%) of all incident SCDs captured through active surveillance of out-of-hospital deaths, all of which are reported to the San Francisco medical examiner as mandated by state law. The 18 deaths that did not undergo full autopsy underwent external examination to exclude the presence of CIEDs. Sudden cardiac deaths were defined by World Health Organization criteria, including sudden unexpected death within 1 hour of acute symptom onset (if witnessed) or within 24 hours of the last observation at baseline (if unwitnessed). Deaths in individuals with a known history of noncardiac chronic terminal illness (eg, terminal cancer) or an identifiable noncardiac etiology (eg, obvious recent drug use on the scene) were excluded. Sudden cardiac deaths in individuals younger than 18 years were also excluded. We included all SCDs initially identified by the medical examiner as having an implanted PPM or ICD.

Evaluation for all cases included full autopsy, toxicology, histology with hematoxylin-eosin and trichrome staining, and detailed examination of the heart and cranial vault. Premortem medical records, medical examiner investigator reports, and emergency medical system documentation from the date of death were obtained. Device interrogation was performed on SCDs with a PPM or an ICD. Terminal rhythm was determined from device interrogation, correlating events stored on the device with the precise timing of the arrest from emergency medical system documentation for witnessed deaths. A multidisciplinary committee consisting of 2 pathologists (P.C.U. and E.M.), 2 electrophysiologists (Z.H.T. and J.E.O.), and 1 neurologist reviewed all available data to adjudicate a final cause of death. Sudden arrhythmic death was defined as an SCD that met World Health Organization criteria and for which no obvious nonarrhythmic cause of death (eg, pericardial tamponade or myocardial rupture) was found. Sudden deaths in individuals with CIEDs were further evaluated by an electrophysiologist (Z.H.T.), a cardiologist (R.M.H.), and a device technician (C.G.M.) to determine whether a device concern was present. Device concerns were subdivided into hardware failures, device algorithm issues, device programming issues, and improper device selection, which was adjudicated when a patient with an indication for an ICD based on published guidelines died of documented ventricular tachycardia (VT) or ventricular fibrillation (VF) with a pacemaker in place.

San Francisco ICD Population

As part of a separate ICD-only study, we identified all adult patients residing in San Francisco from the 5 cardiology practices that follow up patients with ICDs (California Pacific Medical Center Electrophysiology, Golden Gate Cardiology, Kaiser San Francisco, San Francisco Veterans Affairs Medical Center, and University of California, San Francisco) between January 1, 2011, and November 30, 2013. Death was determined by review of clinical records and by a death index search for those lost to follow-up. Sudden cardiac deaths were identified via the POST SCD study. We calculated the cumulative incidence of death, the cumulative incidence of SCD, and the proportion of deaths with an ICD concern.

The study was approved by the Institutional Review Board of the University of California, San Francisco. The ICD-only study was approved by the ethics boards of all 5 contributing cardiology practices. The research was carried out with a waiver of informed consent obtained from the ethics boards of the contributing cardiology practices to use deidentified data.

Statistical Analysis

Continuous variables are presented as means (SDs), and categorical variables are presented as totals with percentages. Characteristics of SCDs with and without CIEDs were compared by unpaired t test with unequal variances for continuous variables and by Fisher exact test for categorical variables. Two-tailed P < .05 was considered statistically significant. Statistical analyses were performed using a software program (STATA SE, version 13.1; StataCorp LP).

Results

Of 517 total incident SCDs in the study period, we identified 22 SCDs in individuals with CIEDs (Figure 1). Therefore, 4.3% of SCDs in San Francisco over a 35-month period occurred with
Individuals with devices were older than individuals without devices at the time of SCD (Table). Fourteen had PPMs, and one of these devices was a biventricular PPM (eTable in the Supplement). Eight individuals (6 with ischemic cardiomyopathy and 2 with dilated cardiomyopathy) had ICDs, and 2 of these devices were cardiac resynchronization therapy defibrillator devices.

Full autopsy, toxicology, and histology were performed on 19 individuals, device interrogation was performed for 21 individuals, and comprehensive review of medical records was performed in all 22 individuals. Device interrogation occurred at a median of 3.2 days (range, 13.5 hours to 23 days) after the time of emergency medical system dispatch. On toxicology screening, no lethal levels of any drugs were found in any of the deceased with CIEDs. Autopsy revealed a noncardiac cause of sudden death in 6 individuals, including intracranial hemorrhage (2 cases), pneumonia (2 cases), massive pulmonary hemorrhage (eFigure 1 in the Supplement), and blunt force trauma to the head and neck (eTable in the Supplement).

After full investigation, 8 of 14 SCDs with PPMs were found to have died of arrhythmic causes, including 6 VFs (cases 2, 4, 8, 9, 13, and 14), 1 presumed profound bradyrhythmia or asystole (case 1), and 1 unknown rhythm (case 10). Device concerns were identified in 4 PPM individuals. One PPM-dependent individual (case 1 with hardware failure in eFigure 2 in the Supplement) had rapid battery depletion, resulting in clinically significant reduction in pacing output just before sudden death. One individual (case 2 with improper device selection in eFigure 3 in the Supplement)
Table. Characteristics of Cardiac Implantable Electronic Device Sudden Cardiac Deaths (CIED SCDs), Non-CIED SCDs, and the San Francisco Implantable Cardioverter Defibrillator (ICD) Population, January 1, 2011, to November 30, 2013

<table>
<thead>
<tr>
<th>Variable</th>
<th>CIED SCDs (n = 22)</th>
<th>Non-CIED SCDs (n = 495)</th>
<th>P Value*</th>
<th>San Francisco ICD Population (n = 712)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD) [range], y</td>
<td>72 (16) [26–98]</td>
<td>63 (14) [18–92]</td>
<td>.004</td>
<td>69.8 (15) [22–103]</td>
<td>.50</td>
</tr>
<tr>
<td>Male sex, No. (%)</td>
<td>17 (77.3)</td>
<td>340 (68.7)</td>
<td>.63</td>
<td>524 (73.6)</td>
<td>.81</td>
</tr>
<tr>
<td>Race/ethnicity, No. (%)</td>
<td></td>
<td></td>
<td>.61</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>White</td>
<td>15 (68.2)</td>
<td>269 (54.3)</td>
<td></td>
<td>357 (50.1)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1 (4.5)</td>
<td>74 (14.9)</td>
<td></td>
<td>92 (12.9)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>5 (22.7)</td>
<td>120 (24.2)</td>
<td></td>
<td>151 (21.2)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (4.5)</td>
<td>25 (5.1)</td>
<td></td>
<td>38 (5.3)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>7 (1.4)</td>
<td></td>
<td>29 (4.1)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td></td>
<td>45 (6.3)</td>
<td></td>
</tr>
<tr>
<td>Coronary artery disease, No. (%)</td>
<td>10 (45.5)</td>
<td>93 (18.8)</td>
<td>.005</td>
<td>337 (47.3)</td>
<td>>.99</td>
</tr>
<tr>
<td>Congestive heart failure, No. (%)</td>
<td>10 (45.5)</td>
<td>62 (12.5)</td>
<td><.001</td>
<td>372 (52.2)</td>
<td>.67</td>
</tr>
<tr>
<td>Diabetes mellitus, No. (%)</td>
<td>1 (4.5)</td>
<td>109 (22.0)</td>
<td>.06</td>
<td>142 (19.9)</td>
<td>.10</td>
</tr>
<tr>
<td>Hypertension, No. (%)</td>
<td>10 (45.5)</td>
<td>75 (15.2)</td>
<td>.001</td>
<td>319 (44.8)</td>
<td>.83</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not applicable. *P value for comparison with CIED SCDs by t test.

Discussion

This study used prospective medical examiner surveillance to identify sudden deaths with CIEDs in San Francisco over a 35-month period. The major findings were as follows: (1) 4.3% (22 of 517) of sudden deaths in San Francisco occurred with a pacemaker or ICD; (2) half of the sudden deaths with CIEDs had a device concern; (3) VT or VF was the most common cause of death in PPM SCDS; (4) for patients with ICDs, the cumulative 35-month incidence of death was 15.3% (109 of 712), and 6.4% (7 of 109) of these deaths were SCDS with a device concern; and (5) VT or VF was the underlying cause of death in almost every SCD with an ICD.

Although multiple randomized trials9-11 have demonstrated the survival benefits of ICDs in patients at high risk for sudden arrhythmic death, rates of sudden death have generally not been reported. Two trials12,13 reported rates of arrhythmic death, but this end point was adjudicated based on clini-
Two large cohort studies of patients with ICDs have found ICD lead failure rates of 2.5% to 15% at 5 years. Eckstein and colleagues reported a 5-year cumulative incidence of lead failure of 2.5% and a 5-year overall mortality of 22.8%. Over a median follow-up of 77 months, 38 lead failures and 315 deaths occurred in 1317 patients. Death was treated as a competing rather than censoring event and thus regarded as not involving device failure. Results from an ICD cohort study for actu-
Figure 3. Case 17 Device Interrogation

Top: Atrial electrogram. Middle: Ventricular electrogram. Bottom: Device markers. Strips are continuous. Device interrogation demonstrates ventricular fibrillation (VF) that was undersensed, with the device interpreting a return to sinus rhythm (*) and no shock delivered. The undersensed events (arrowheads) commonly occur after larger ventricular electrograms (arrows), which are due to a delay decay algorithm. Specific to this manufacturer, decay delay is a nonprogrammable refractory period intended to allow sensing of the next ventricular event without double-counting the T-wave in detecting tachyarrhythmia. However, in this case causes undersensing of VF. AS indicates atrial sense; BP, biventricular pace; DDI, DDI mode of cardiac pacing; F, fibrillation; and VS, ventricular sense.
Our findings also demonstrate that corroborating information in addition to device interrogation is critical for complete evaluation of device function because devices can undersense or miss events. In case 16, the ICD log showed no data in the VF zone, this programming extended the episode of VF and allowed for degradation of the signal and undersensing, thus further extending the interval and possibly directly leading to subsequent VF episodes due to ischemia or refractory VF. In these 2 cases, we also identified a device algorithm issue: the delay to shock was specific to this manufacturer’s device, which is unable to deliver shock immediately after unsuccessful antitachycardia pacing, instead requiring redetection of VF and thus contributing to delay of therapy.

The VF zone, this programming extended the episode of VF and allowed for degradation of the signal and undersensing, thus further extending the interval and possibly directly leading to subsequent VF episodes due to ischemia or refractory VF. In these 2 cases, we also identified a device algorithm issue: the delay to shock was specific to this manufacturer’s device, which is unable to deliver shock immediately after unsuccessful antitachycardia pacing, instead requiring redetection of VF and thus contributing to delay of therapy.

Our findings also demonstrate that corroborating information in addition to device interrogation is critical for complete evaluation of device function because devices can undersense or miss events. In case 16, the ICD log showed no arrhythmias during a 5-minute window when emergency medical system documentation showed administration of exte-
nal shocks to rescue VF. It is possible that even our in-depth interrogation missed other instances of undersensing during the study period. However, it would also be expected that a less robust surveillance system like the MAUDE database would be even more likely to miss these events.

This study also highlights the importance of proper CIED selection in patients with cardiac rhythm disorders. Case 2 had an indication for a primary prevention ICD based on clinical data before death; ICD implantation is a Ia recommendation in the most recent American College of Cardiology, American Heart Association, and Heart Rhythm Society guidelines for patients with hypertrophic cardiomyopathy with these risk factors. It is recognized that the clinical decision for implantation of an ICD is not always straightforward and includes weighing psychosocial factors, patient wishes, comorbidities, and other factors that may be difficult to glean from a postmortem investigation. However, rigorous and systematic postmortem data provide an opportunity for clinical practice improvement.

This study has several limitations. Despite thorough investigation, the exact rhythm at the time of death is not always known because of uncertainty regarding the exact cause of death, because the terminal rhythm did not meet criteria for device recording, or because the CIED had reached the elective replacement indicator and electrograms were not stored. In addition, despite the fact that this study has evaluated more comprehensive data per SCD than any other study to date, the exact cause of death sometimes remains unclear and is subject to interpretation. For example, we adjudicated 2 PPM-dependent SCDs with right ventricular lead concern due to premortem doubling of lead impedance not seen in PPM SCDs without lead concern, but these SCDs also had pneumonia (case 3) or cardiomegaly (case 4) and thus produced uncertainty regarding the true cause of death. Also, when VF persists for prolonged periods, electrogram amplitude decreases and undersensing are potential problems. Whether appropriate sensing and additional shocks could have saved these patients who had recurrent VF, despite multiple appropriate shocks, is not known. In addition, programming changes to increase detection of VF by preventing dropout have the potential to increase inappropriate shocks. Furthermore, epidemiological studies of SCD vary on whether to include patients with end-stage renal disease. We included CIED SCDs with end-stage renal disease (case 19 in this study) because these patients were included in the ICD-only study, and the goal was to evaluate all patients with active devices. However, patients with end-stage renal disease are excluded from the POST SCD study, and removing the one CIED SCD case with end-stage renal disease from the rate analysis gives a rate of 4.1% (21 of 517) over 35 months, which is virtually unchanged from the main estimate of 4.3% (22 of 517). Finally, the numbers of patients with PPMs in San Francisco and nationally are not precisely known, and further study in this area is needed to determine actuarial rates of PPM failure that lead to sudden death.

Conclusions

In summary, over a 3-year period in one city, systematic interrogation and autopsy of SCDs with CIEDs, which is not part of standard practice, identified concerns about CIED function that might otherwise not have been observed. Current passive surveillance efforts may underestimate device malfunction. A prospective, systematic approach incorporating these methods can provide unbiased data regarding what may lead to sudden death in individuals with CIEDs and improve surveillance for CIED problems.

Editor's Note

Strengthening Medical Device Postmarket Safety Surveillance

Joseph S. Ross, MD, MHS

The system by which the US Food and Drug Administration engages in medical device postmarket safety surveillance needs strengthening.1-4 Efforts are limited by reliance on passively aggregated adverse events through the Manufacturer and User Facility Device Experience (MAUDE) database, investigated adverse events at select clinical sites within the Medical Product Safety Network (MedSun), and select active surveillance efforts using Post-Approval Studies and Postmarket Surveillance Studies (also known as the S22 Postmarket Surveillance Studies Program). While these efforts have successfully detected potential safety issues and contributed to reassessments of the benefits and risks of devices, these systems are likely to identify only a small proportion of the totality of adverse events that occur. Passive surveillance is undermined by the frequent reporting of incomplete, inaccurate, untimely, unverified, or biased data, whereas active surveillance is expensive, often narrow in scope, and impaired by the frequent delays in completion of requested studies. Efforts will be enhanced by the planned addition of a Unique Device Identification System integrated within electronic health care data, such as administrative claims data collected by health insurance payers for billing purposes, which would allow large-scale, proactive assessments of medical device safety.4

Without a better functioning system, postmarket surveillance of medical devices has largely been driven by experiences at select institutions, where individuals identify and publicize potential safety issues that the Food and Drug Administration subsequently investigates, such as the recent class I recall of implantable cardioverter defibrillator leads.3