Sex Differences in Risk for Coronary Heart Disease Mortality Associated With Diabetes and Established Coronary Heart Disease

Sundar Natarajan, MD, MSc; Youlian Liao, MD; Guichan Cao, MS; Stuart R. Lipsitz, ScD; Daniel L. McGee, PhD

Background: The sex-specific independent effect of diabetes mellitus and established coronary heart disease (CHD) on subsequent CHD mortality is not known.

Methods: This is an analysis of pooled data (n=5243) from the Framingham Heart Study and the Framingham Offspring Study with follow-up of 20 years. At baseline (1971-1975), 134 men and 95 women had diabetes, while 222 men and 129 women had CHD. Risk for CHD death was analyzed by proportional hazards models, adjusting for age, hypertension, serum cholesterol levels, smoking, and body mass index. The comparative effect of established CHD vs diabetes on the risk of CHD mortality was tested by testing the difference in log hazards.

Results: The adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for death from CHD were 2.1 (95% CI, 1.3-3.3) in men with diabetes only, and 4.2 (95% CI, 3.2-5.6) in men with CHD only compared with men without diabetes or CHD. The HR for CHD death was 3.8 (95% CI, 2.2-6.6) in women with diabetes, and 1.9 (95% CI, 1.1-3.4) in women with CHD. The difference between the CHD and the diabetes log hazards was +0.73 (95% CI, 0.72-0.75) in men and −0.65 (95% CI, −0.68 to −0.63) in women.

Conclusions: In men, established CHD signifies a higher risk for CHD mortality than diabetes. This is reversed in women, with diabetes being associated with greater risk for CHD mortality. Current treatment recommendations for women with diabetes may need to be more aggressive to match CHD mortality risk.

Arch Intern Med. 2003;163:1735-1740

From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (Dr Natarajan); the Center for Health Care Research (Dr Natarajan), Department of Medicine (Dr Natarajan), and Department of Biometry and Epidemiology (Drs Liao and Lipsitz and Ms Cao), Medical University of South Carolina, Charleston; and Department of Statistics, Florida State University, Tallahassee (Dr McGee). The authors have no relevant financial interest in this article.
Coronary heart disease was defined as myocardial infarction, coronary insufficiency, or angina pectoris. The outcome measure was CHD mortality, which was ascertained by a panel of clinical investigators by reviewing records that included detailed history, clinical findings, electrocardiograms, autopsy reports, and death certificates. Briefly, CHD death was categorized as either sudden or nonsudden death. Sudden death was defined as death within 1 hour from onset of symptoms where the death could not reasonably be attributed to some other non-CHD cause. Nonsudden death was diagnosed if the terminal episode lasted longer than 1 hour, the available documentation suggested CHD as the cause, and no other cause could be ascribed.

Participants were considered to have probable diabetes based on 2 casual plasma glucose levels greater than 150 mg/dL (8.3 mmol/L) or the use of hypoglycemic medications (insulin or oral hypoglycemic agents) in the Framingham Heart Study. These individuals then had their records reviewed (including glucose tolerance tests) by the investigators and a final diagnosis of diabetes was made based on corroborating evidence. A fasting plasma glucose level greater than 140 mg/dL (7.8 mmol/L) or the use of hypoglycemic agents defined diabetes in the Framingham Offspring Study.

Smoking status was obtained by self-report and participants were classified as current smokers (regular smoking in the year prior to the visit) and nonsmokers. Hypertension was defined as systolic blood pressure of 140 mm Hg or higher, diastolic blood pressure of 90 mm Hg or higher, or taking antihypertensive medications. Lipid measures included total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Height and weight were measured during each visit and body mass index (BMI) was calculated as weight in kilograms divided by the square of the height in meters.

STATISTICAL ANALYSIS

The analyses were performed separately by sex. Baseline characteristics were compared for the 4 CHD and diabetes groups: neither CHD nor diabetes, CHD only, diabetes only, and both CHD and diabetes. Life-table analysis was used to determine the cumulative CHD mortality rate and to produce CHD mortality curves for the 4 groups. Coronary heart disease mortality was adjusted for baseline age using the direct method and a log-rank test was used to test the differences in survival.

The independent effect of diabetes or established CHD on CHD mortality was determined using proportional hazards models. All multivariate analyses were adjusted for age, hypertension, smoking, serum cholesterol (either total and HDL-C or LDL-C and HDL-C), and BMI. The risk of CHD death for the 3 CHD and diabetes groups (CHD alone, diabetes alone, and both CHD and diabetes) was evaluated using persons without diabetes or CHD as the reference. To determine the effect of CHD severity on subsequent CHD mortality, patients with CHD were classified into more severe (myocardial infarction) and less severe (coronary insufficiency or angina pectoris) categories and evaluated as independent variables, along with diabetes and other covariates, in a multivariate proportional hazards model.
To determine if the differential risk for CHD mortality in men and women is due to differences in severity of CHD, in the multivariate analysis, we separated CHD into 2 groups: myocardial infarction and angina pectoris/coronary insufficiency. In men, diabetes had an HR for CHD mortality of 1.7 (95% CI, 1.2-2.5), angina pectoris/coronary insufficiency had an HR of 3.2 (95% CI, 2.2-4.5), and myocardial infarction had an HR of 5.0 (95% CI, 3.6-6.9). In women, the corresponding HRs were 3.6 (95% CI, 2.2-5.9) for diabetes, 1.5 (95% CI, 0.9-2.7) for angina pectoris/coronary insufficiency, and 3.1 (95% CI, 1.2-7.6) for myocardial infarction. Thus, men with prior myocardial infarction or other forms of CHD were at a higher risk for CHD death than men with diabetes. In women, diabetes still conferred a higher risk than the 2 CHD groups.

To compare the magnitude of risk for CHD mortality in individuals with CHD with the magnitude of risk in individuals with diabetes, the difference in regression coefficients (equivalent to log hazard ratios) between CHD and diabetes was determined. The difference between the CHD coefficient and the diabetes coefficient in men was +0.73 (95% CI, 0.72-0.75). This indicates that, in men, established CHD has a greater magnitude of risk for CHD mortality than diabetes (HR, 2.08; 95% CI, 2.05-2.12). In contrast, the difference was −0.66 (95% CI, −0.68 to −0.63) in women, implying lower risk of CHD death from prior CHD than diabetes (HR, 0.52; 95% CI, 0.51-0.53).

To further evaluate sex differences in the relationship between diabetes and CHD on CHD mortality, sex, diabetes, and CHD interactions were tested with men and women combined using hierarchical modeling principles. Because the sex-diabetes-CHD interaction (P = .96) and the CHD-diabetes interaction (P = .31) were not significant, they were not included in the final model. The sex-CHD interaction was associated with an HR of 0.50 (95% CI, 0.29-0.86), which indicates that the relative risk for fatal CHD among women with CHD is significantly lower than the relative risk for men with CHD. In contrast, the sex-diabetes interaction was associated with an HR of 2.31 (95% CI, 1.26-4.23), indicating that the relative risk for CHD death in women with diabetes is higher than the relative risk for CHD death among men with diabetes.

The findings from this prospective, community-based study emphasize the magnitude of diabetes as a major risk factor for CHD mortality in men and women. These findings quantify sex differences in the risk for CHD mortality in individuals with diabetes by comparing it with established CHD. In men, while diabetes is an important risk factor for fatal CHD, established CHD is associated with a larger magnitude of risk. In women, the magnitude of the association is reversed and diabetes is a larger risk for fatal CHD than established CHD. In both men and women, individuals with both diabetes and CHD were at dramatically higher risk. Though it is well known that the CHD mortality rate in general is lower in women than in men of the same age, the age-adjusted CHD mortality rate in diabetic women is higher than in men without diabetes and approaches the mortality rate seen in men with diabetes.

The sex difference in the relative magnitude of risk for CHD mortality may be explained by several biological mechanisms. In our analysis, diabetic women without CHD were more likely to smoke, have lower HDL-C and lower LDL-C levels compared with nondiabetic women with CHD. However, even after adjusting for these and other risk factors, diabetes was associated with a significant increased risk for CHD mortality. Data from the Nurses’ Health Study14 indicate that at any level of other risk factors, women with diabetes are more likely to have

Table 1. Baseline Characteristics of the Study Sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diabetes</td>
<td>No Diabetes</td>
</tr>
<tr>
<td></td>
<td>CHD No CHD</td>
<td>CHD No CHD</td>
</tr>
<tr>
<td>Participants, No. (%)</td>
<td>31 (1.2)</td>
<td>103 (4.1)</td>
</tr>
<tr>
<td>Age, y</td>
<td>62.6 ± 6.8</td>
<td>55 ± 10.2</td>
</tr>
<tr>
<td>BMI</td>
<td>27 ± 2.7</td>
<td>28.4 ± 4.3</td>
</tr>
<tr>
<td>Current smoking, %</td>
<td>48</td>
<td>47</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>226 ± 43</td>
<td>210 ± 47</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>39 ± 10</td>
<td>41 ± 11</td>
</tr>
<tr>
<td>LDL-C, mg/dL</td>
<td>145 ± 38</td>
<td>134 ± 33</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>140 ± 23</td>
<td>143 ± 23</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>82 ± 13</td>
<td>86 ± 12</td>
</tr>
<tr>
<td>CHD categories, No. (%)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>19 (61.3)</td>
<td>96 (50.3)</td>
</tr>
<tr>
<td>CI</td>
<td>5 (16.1)</td>
<td>12 (6.3)</td>
</tr>
<tr>
<td>AP</td>
<td>7 (22.6)</td>
<td>83 (43.5)</td>
</tr>
</tbody>
</table>

Abbreviations: AP, angina pectoris; BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters); BP, blood pressure; CHD, coronary heart disease; CI, coronary insufficiency; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction.

SI conversion factor: To convert cholesterol to millimoles per liter, multiply by 0.02586.

*Data are given as mean ± SD unless otherwise specified. Some of the percentages may not sum to 100 because of rounding.
cardiovascular events than women without diabetes. Women with diabetes have been shown to have lower HDL-C and higher triglyceride levels than men with diabetes. Diabetes has been demonstrated to have greater adverse effects in women with regard to waist-to-hip ratio, LDL-C, HDL-C, LDL particle size, apolipoprotein B, apolipoprotein A1, and fibrinogen. Compared with diabetic men, diabetic women may have greater levels of lipid peroxidation, independent of glycemic control. In addition to the other CHD risk factors, excess circulating glucose may adversely affect the estrogen-related cardiovascular protection by decreasing vascular and platelet nitric oxide production, thereby increasing vascular tone, platelet aggregation, and enhance vascular proliferation. While premenopausal nondiabetic women have greater endothelium-dependent vasodilation than non-diabetic men, premenopausal diabetic women have significant impairment of endothelial function, leading to endothelial dysfunction similar to diabetic men. In addition to these markers of increased risk, since women have less severe coronary atherosclerosis and less collateral vessels than men, they tend to sustain greater myocardial damage with coronary occlusion and thus diabetes may impact women more than men, both for CHD morbidity and mortality. For example, in the Framingham Study, 66% of CHD deaths in women occurred in those without prior angina. Because the weight of evidence indicates that diabetes and CHD have marked sex differences in subsequent CHD rates, it is crucial to analyze the data by sex. This analytic approach is probably responsible for the differences between this study and the previous study, which did not formally test for sex differences. Haffner et al. combining Finnish men and women, compared the risk for fatal CHD in 890 diabetic individuals without prior myocardial infarction (48% female) with 69 nondiabetic individuals with prior myocardial infarction (26% female). They found an HR for fatal CHD of 1.2 (95% CI, 0.6-2.4) and inferred that the risk associated with diabetes and that associated with previous CHD were similar.

Table 2. Rate of Fatal CHD and Its Relationship to Diabetes and Established CHD in Men and Women

<table>
<thead>
<tr>
<th>CHD Deaths, No.</th>
<th>Rate/1000 Person-Years</th>
<th>Hazard Ratio (95% CI)</th>
<th>Age Adjusted Multivariate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>172</td>
<td>4.5</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td>CHD only</td>
<td>78</td>
<td>32.9</td>
<td>4.8 (3.6-6.3)</td>
</tr>
<tr>
<td>Diabetes only</td>
<td>19</td>
<td>12.1</td>
<td>2.2 (1.3-3.5)</td>
</tr>
<tr>
<td>Both diabetes</td>
<td>13</td>
<td>47.8</td>
<td>6.9 (3.9-12.3)</td>
</tr>
<tr>
<td>and CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>76</td>
<td>1.6</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td>CHD only</td>
<td>14</td>
<td>8.3</td>
<td>2.3 (1.3-4.1)</td>
</tr>
<tr>
<td>Diabetes only</td>
<td>16</td>
<td>13.8</td>
<td>5.2 (3.0-9.0)</td>
</tr>
<tr>
<td>Both diabetes</td>
<td>7</td>
<td>31.7</td>
<td>9.2 (4.2-20.4)</td>
</tr>
<tr>
<td>and CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CHD, coronary heart disease; CI, confidence interval.
*Adjusted for age, smoking, hypertension, total serum cholesterol, high-density lipoprotein cholesterol, and body mass index.
Miettinen et al.32 reported a high mortality rate in diabetes and adverse impact of diabetes in women compared with men. A 2-year cardiovascular mortality rate of 9.3%, with greater non–Q-wave myocardial infarction was associated with a patient recently hospitalized for unstable angina or non–Q-wave myocardial infarction was associated with a 2-year cardiovascular mortality rate of 9.3%, with greater adverse impact of diabetes in women compared with men. Miettinen et al.32 reported a high mortality rate in diabetic patients after their first myocardial infarction, with the difference being particularly high in women.

The results from this investigation should be interpreted while taking into account certain potential limitations. First, this community-based study comprised almost totally white participants and thus this same effect may not be seen in nonwhite persons. Second, information regarding family history of CHD, renal function, severity of diabetes, abdominal obesity, physical activity, homeostatic factors, inflammatory markers, other vascular risk factors, and socioeconomic status was not available. Therefore, we were unable to adjust for these potential confounders. Third, because angina is a less sensitive and specific symptom of coronary disease in women, a certain proportion of women reporting angina may be misclassified as having CHD. Even when severity of CHD was considered in the analysis, men with prior myocardial infarction or other forms of CHD were at a higher risk for CHD death than men with diabetes, while in women diabetes conferred a higher risk than the CHD groups. Finally, this study followed up participants over a 20-year period and these analyses have not accounted for differences in diagnostic criteria and treatment for diabetes and CHD over this period.

Despite these potential limitations, this analysis adds to the body of knowledge regarding the effect of diabetes on CHD mortality by quantifying the dramatic impact of diabetes in women after accounting for other known CHD risk factors. The findings from this study support aggressive management of diabetes to prevent CHD, particularly in women. While there may be a decrease in CHD events such as myocardial infarction with intensive glycemic control,33 the benefits from aggressive treatment of hypertension,34 dyslipidemia,35 and platelet responsiveness36 are unambiguous.

Of public health concern, estimates indicate that the number of persons with diabetes is likely to double in the first quarter of the 21st century with a corresponding increase in social and financial burden.37 A recent cost-effectiveness analysis38 found that treating dyslipidemia in diabetic patients without cardiovascular disease ($5063-$23792 per year of life saved) was as cost-effective as treating non-diabetic patients with cardiovascular disease ($8799-$21628 per year of life saved). Based on our data, since women are at higher risk, it is likely that treatment of women with diabetes will be even more cost-effective. Since the intensity of management of diabetic patients is based on their risk for CHD, and because women with diabetes may be at higher risk for CHD than women with established CHD, current guidelines for treatment of women with diabetes may need to be more aggressive.

In conclusion, this community-based prospective study identifies diabetes as worse than prior established CHD in risk for subsequent CHD mortality in women. In men, prior CHD has greater risk for subsequent fatal CHD than diabetes. This analysis should provide the impetus to further refine treatment guidelines to match the intensity of treatment to patients’ risk for future CHD events.

Accepted for publication October 31, 2002.

We thank John A. Colwell, MD, PhD, and Robert Fletcher, MD, for reviewing earlier versions of the manuscript.

Public use Framingham Heart Study and Framingham Offspring Study data were obtained from the National Heart, Lung, and Blood Institute, Bethesda, Md. The views expressed in this article are those of the authors and do not necessarily reflect those of this agency.

This study was supported in part by the Department of Veterans Affairs Health Services Research and Development Career Development Award RCD 000211 and Public Health Service grants DK52329 (National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health) HL7460, HL68900, HL52329 (National Heart Lung and Blood Institute, National Institutes of Health), and AHRQ 10871 (Agency for Healthcare Research and Quality). Corresponding author: Sundar Natarajan, MD, MSc, 423 E 23rd St, Room 1110-S, New York, NY 10010 (e-mail: sundar.natarajan@med.nyu.edu).

REFERENCES

9. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investiga-

