risk, one obvious course of action is to maintain the status quo. This is currently the most prudent approach, especially in secondary prevention settings where the benefits of aspirin are indisputable and greatly exceed the risk. For primary prevention of cardiovascular disease, where the evidence is less certain, the decision to prescribe aspirin should be predicated on the balance of risks (bleeding and possibly AMD) and benefits (cardiovascular disease and possibly cancer). For guideline-eligible patients (the 10-year risk of myocardial infarction in men aged 45-79 years is >4%, and the 10-year risk of stroke in women aged 55-79 years is >3%, and in whom the bleeding risk is low), the presence or absence of strong risk factors for neovascular AMD might tilt treatment decisions in one direction or the other. For patients taking long-term aspirin for other indications (pain control), caution is warranted in light of these observations. In the final analysis, decisions about aspirin use are best made by balancing the risks against the benefits in the context of each individual’s medical history and value judgments.

Sanjay Kaul, MD
George A. Diamond, MD

Published Online: January 21, 2013. doi:10.1001/jamainternmed.2013.2530

Author Affiliations: Division of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California.

The Incremental Nature of Clinical Research

The eloquent Invited Commentary by Kaul and Diamond illustrates the great care that must be taken before concluding that an association described in an observational study truly represents a cause-effect relationship. In our discussion of the article by Liew and colleagues, the editors believed that it provided useful incremental data about an important condition. However, as with many good studies, the data are not definitive enough to suggest changes in clinical practice. Rather, we hope the study galvanizes more research on the relationship between aspirin and macular degeneration. For example, ASPREE (Aspirin in Reducing Events in the Elderly), a large international, randomized controlled trial on the effect of aspirin on cardiovascular outcomes and dementia in elderly persons, hopefully will consider rigorously assessing for macular degeneration.

After the editors decided to accept this article, we discussed the risk that press reports would fall into the trap of reporting this study as definitive. This study provides an opportunity to educate the public about the subtleties and incremental nature of medical research. Our understanding of disease etiology advances as evidence accumulates from multiple good studies.

Kenneth E. Covinsky, MD, MPH

Correspondence: Dr Kaul, Division of Cardiology, Cedars-Sinai Medical Center, 8635 W Third St, Ste 790W, Los Angeles, CA 90048 (sanjay.kaul@cshs.org).
Conflict of Interest Disclosures: None reported.

1. Liew G, Mitchell P, Wong TY, Rochtchina E, Wang JJ. The association of aspirin use with age-related macular degeneration [published online Janu-
3. Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL III; Age-Related Eye
Disease Study Research Group. Risk factors for the incidence of Advanced
Age-Related Macular Degeneration in the Age-Related Eye Disease Study
of early age-related maculopathy: the Beaver Dam Eye Study. Arch Ophthal-
5. de Jong PT, Chakravarthy U, Rahu M, et al. Associations between aspirin
119(1):112-118.
6. Christen WG, Glynn RJ, Ajani UA, et al. Age-related maculopathy in a ran-
domized trial of low-dose aspirin among US physicians. Arch Ophthal-
7. Christen WG, Glynn RJ, Chew EY, Buring JE. Low-dose aspirin and med-
cal record confirmed age-related macular degeneration in a randomized trial
laboration. Aspirin in the primary and secondary prevention of vascular dis-
ease: collaborative meta-analysis of individual participant data from ran-
lar and nonvascular outcomes: meta-analysis of randomized controlled trials.
10. US Preventive Services Task Force. Aspirin for the prevention of cardiovas-