trauma and surgical intensive care unit patients, respectively, and, not surprisingly, reported higher mortality rates of 19.2% and 22.2%, respectively, in these higher-risk populations. Hip fracture, the only surgical diagnosis among the 10 most common diagnoses in the current study, was associated with a 5.9% hospital mortality rate.

This study has several limitations. Because the HCUP-NIS is an administrative database, we lacked clinical, functional, or other details. Errors in ICD-9-CM coding and documentation are possible, although the error rate has been found to be low in this database.3 As with any administrative database, ICD-9-CM coding may be biased by the tendency to code diagnoses with higher reimbursement. In addition, determination of a primary diagnosis may be difficult in elderly patients owing to the presence of multiple comorbid conditions. We did not analyze the frequency or outcomes of specific interventions, except endotracheal intubation, during the hospitalization. This is an important topic for future research. Finally, information for each patient was limited to a single hospitalization. We do not have information on posthospitalization events or outcomes, such as re-admission, discharge to hospice or long-term care, long-term survival, or change in function.

This study reports data on admission rates, all-cause mortality, and disease-specific mortality in centenarians. Results show a hospitalization rate of over 50 admissions per 100 centenarians; 90% survived the hospitalization. Hospital care may benefit a sizable proportion of very elderly individuals. Given the expanding population of centenarians, it will be important to examine the types of services received and posthospitalization outcomes.

Anant Mandawat, AB
Aditya Mandawat, MD
Mahendra K. Mandawat, MD
Mary E. Tinetti, MD

Published Online: June 18, 2012. doi:10.1001/archinternmed.2012.2155

Author Affiliations: Departments of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (Mr A. Mandawat and Dr Tinetti), Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts (Dr A. Mandawat), Georgia Health Sciences University, Augusta (Dr M. K. Mandawat), and Augusta VA Medical Center, Augusta (Dr M. K. Mandawat).

Correspondence: Dr Tinetti, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar St, PO Box 208025, New Haven, CT 06520 (mary.tinetti@yale.edu).

Author Contributions: Mr A. Mandawat and Dr A. Mandawat contributed equally to this manuscript. Study concept and design: Anant Mandawat, Aditya Mandawat, M. K. Mandawat, and Tinetti. Acquisition of data: Aditya Mandawat and M. K. Mandawat. Analysis and interpretation of data: Anant Mandawat, Aditya Mandawat, and M. K. Mandawat. Drafting of the manuscript: Anant Mandawat and Aditya Mandawat. Critical revision of the manuscript for important intellectual content: Aditya Mandawat, M. K. Mandawat, and Tinetti. Statistical analysis: Aditya Mandawat and Anant Mandawat.

Aditya Mandawat and Anant Mandawat. Administrative, technical, and material support: Anant Mandawat and Tinetti. Study supervision: M. K. Mandawat and Tinetti.

Financial Disclosure: None reported.

Funding/Support: This study was supported in part by the Yale Pepper Center (P30 AG021342) from the National Institute on Aging.

Online-Only Material: The eTable is available at http://www.archinternmed.com.

Effects of Statins on Energy and Fatigue With Exertion: Results From a Randomized Controlled Trial

No drug is without adverse effect potential, and fatigue and exertional intolerance are adverse effects reported by patients receiving statins.1,2 Little direct information is available regarding the typical or average impact of statins on energy or exertional fatigue.

Although many observational reports have cited fatigue and exertional fatigue with statin use, to our knowledge, no randomized trials have addressed this issue to date. Energy and exertional fatigue were measured as tertiary and/or exploratory outcomes in the University of California, San Diego (UCSD) Statin Study, which aimed to examine a range of noncardiac outcomes.3 We capitalized on these data to evaluate whether moderate-dose statins affected energy and exertional fatigue in a broadly sampled primary prevention population.

CME available online at www.jamaarchivescme.com and questions on page 1122

Methods. A total of 1016 subjects (692 men 20 years or older and 324 nonprocreative women, with screening low-density lipoprotein cholesterol levels 115-190 mg/dL [to convert to millimoles per liter, multiply by 0.0259] and no cardiovascular disease or diabetes) were randomized equally to 20-mg simvastatin (lipophilic statin), 40-mg pravastatin (hydrophilic statin), or microcrystalline-
cellulose placebo, to be taken at bedtime in identical binding capsules for 6 months.

The off-site study pharmacist matched sequentially numbered bottles to sequential computer-generated randomized assignment stratified by sex (block size, 20; designed by statistician [H.L.W.]). Bottles were transferred to the study site and given to successive eligible subjects by staff blinded to the randomization schedule. The protocol was approved by the UCSD Human Subjects Protection Program. All subjects (seen exclusively at UCSD) gave written informed consent. The data and safety monitoring board provided independent study oversight.

Outcome. Single-item self-ratings of change from baseline in “energy” and “fatigue with exertion” were used, assessed on 6-month follow-up, and rated (5-point scale) from “much less” (−2) to “much more” (+2) vs baseline.

Energy and fatigue with exertion were rated at baseline from 0 (none) to 10 (maximum possible). All subjects rated energy; the final 397 subjects (a randomized subset) rated fatigue with exertion (omitted initially to limit subject burden, restored for the final 40% of subjects). Missing values of baseline and change score were imputed using the Stata “impute” command (StataCorp). “EnergyFatigEx” values were generated by summing ratings for the energy and fatigue with exertion measures, aligning signs with lower values worse (i.e., recoding such that for both variables lower values signified worse status), for baseline and on-treatment, yielding a single outcome (on-treatment score range, −4 to +4).

Statistical Analysis. We assessed the correlation of EnergyFatigEx with actual exercise (baseline assessment: episodes per week of vigorous exercise >20 minutes). The unpaired t-test was used to examine the difference in mean on-treatment EnergyFatigEx in all subjects and women separately. Ordinal logistic regression with robust (“White”) standard errors adjusted for baseline values of the combined variable, addressing baseline disparities and regression to the mean (a source of power erosion variance). The χ2 test was used to examine whether statins shifted, relative to placebo, the proportion reporting changes of subjectively large magnitude (“much worse” or “much better” vs placebo on both outcomes; the same principle that guides sign tests). Analyses used Stata statistical software versions 8.0 and 11.0 (StataCorp). A 2-sided α level of .05 designated significance.

Table. Change in Energy and Exertional Fatigue Outcome (EnergyFatigEx) for Placebo vs Statin Groups

<table>
<thead>
<tr>
<th></th>
<th>Placebo (Mean (SD))</th>
<th>Statin (Mean (SD))</th>
<th>P Valueb</th>
<th>Simvastatin (Mean (SD))</th>
<th>P Value</th>
<th>Pravastatin (Mean (SD))</th>
<th>P Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>−0.06 (0.71)</td>
<td>−0.21 (0.87)</td>
<td>.005</td>
<td>−0.25 (0.87)</td>
<td>.002</td>
<td>−0.17 (0.86)</td>
<td>.06</td>
</tr>
<tr>
<td>Women</td>
<td>−0.08 (0.72)</td>
<td>−0.39 (1.14)</td>
<td>.01</td>
<td>−0.47 (1.20)</td>
<td>.004</td>
<td>−0.31 (1.08)</td>
<td>.07</td>
</tr>
</tbody>
</table>

Results. For CONSORT (Consolidated Standards for Reporting of Trials) and study baseline characteristics, see eFigure and eTable (http://www.archinternmed.com). Energy and predictors of exertional fatigue were comparable at baseline; however, in the subsample with measured baseline exertional fatigue, pravastatin values differed from other arms and influenced imputed baseline values (Table). There was a significant relation between measured baseline EnergyFatigEx and actual exercise (r = 0.20; P < .001). The drop in low-density lipoprotein cholesterol level with 20-mg simvastatin (49 mg/dL) exceeded that with 40-mg pravastatin (40 mg/dL) (P < .001).

Results of t tests of difference in mean on-treatment change in EnergyFatigEx were significant for combined statins vs placebo. Each statin contributed (effects separately significant for simvastatin) (Table). Women were disproportionately affected. The 0.4 mean difference observed for women receiving simvastatin vs placebo would arise if 4 in 10 treated women cited worsening in either energy or exertional fatigue; 2 in 10 characterized both as “worse” or either as “much worse” (P < .001); and pravastatin, β (SE), −0.68 (0.15) (P < .001); simvastatin, β (SE), −0.51 (0.13) (P < .001); and pravastatin, β (SE), −0.33 (0.15) (P = .05).

The balance of those reporting maximal worsening vs maximal improvement (“much worse” vs baseline on each component vs “much better” on each) was adversely shifted for statins vs placebo (P = .002) and for each statin separately (simvastatin, P = .03; pravastatin, P = .01). These are based on small numbers, and findings are provisional.

Comment. To our knowledge, this is the first randomized evidence affirming unfavorable statin effects on energy and exertional fatigue. Effects were seen in a generally healthy sample given modest statin doses, and both simvastatin and pravastatin contributed to the significant adverse effect of statins on energy and fatigue with exertion. Particularly for women, these unfavorable effects were not uncommon. Findings support case reports citing adverse effects to these outcomes and are buttressed by literature rationale.1,6 These findings are important, given the central relevance of energy and functional status to well-being.
These effects, germane to quality of life, merit consideration when prescribing or contemplating use of statins, particularly in groups without expected net morbidity/mortality benefit, extending to “high-risk” primary prevention and women and elderly persons (including those with coronary artery disease).\(^7,8\) There was a significant relation between EnergyFatigEx and actual activity: reduced activity and exertional tolerance (irrespective of activity) in turn predict hard adverse outcomes. Effects may take time to manifest, as may benefits of statin use. Thus, long-term trials are important, if statin use is to be recommended in younger individuals. Meanwhile, physicians should be alert to patients’ reports of exertional fatigue or diminished energy during statin use.

Beatrice A. Golomb, MD, PhD
Marcella A. Evans, BS
Joel E. Dimsdale, MD
Halbert L. White, PhD

Published Online: June 11, 2012. doi:10.1001/archinternmed.2012.2171

Author Affiliations: Departments of Medicine (Dr Golomb and Ms Evans), Family and Preventive Medicine (Dr Golomb), Psychiatry (Dr Dimsdale), and Economics (Dr White), University of California, San Diego; and Department of Anatomy and Neurobiology, University of California, Irvine (Ms Evans).

Correspondence: Dr Golomb, Department of Medicine, University of California, San Diego, 9500 Gilman Dr, Mail Code 0995, La Jolla, CA 92039-0995 (bgolomb@ucsd.edu).

Author Contributions: Dr Golomb had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Golomb and Dimsdale. Acquisition of data: Golomb and White. Analysis and interpretation of data: Golomb, Evans, Dimsdale, and White. Drafting of the manuscript: Golomb, Dimsdale, and White. Critical revision of the manuscript for important intellectual content: Golomb, Evans, and Dimsdale. Statistical analysis: Golomb and White. Obtained funding: Golomb. Administrative, technical, and material support: Evans. Study supervision: Dimsdale.

Financial Disclosure: None reported.

Funding/Support: This study was funded by National Institutes of Health (NIH) grant RO1 HL63055 from the National Heart, Lung, and Blood Institute and was supported by the UCSD General Clinical Research Center (NIH grant MO1 RR00827).

Trial Registration: clinicaltrials.gov Identifier: NCT00330980

Online-Only Material: The eFigure and eTable are available at http://www.archinternmed.com.

Additional Contributions: Janis B. Ritchie, BSN, Diana King, BS, and Julie O. Denenberg, MA, were study clinic manager, recruitment manager, and data manager, respectively, and were seminal to the smooth operations of the study. Study pharmacist Steve Funk, PharmD, managed pill and blinding allocations. Tom Cookson, PharmD, assisted in recruitment in early phases of the study. These individuals received payment for their involvement on the study. Sabrina Koperski provided administrative assistance. We sincerely thank the study subjects, without whom this study would not have been possible.

Vardenafil for the Treatment of Raynaud Phenomenon: A Randomized, Double-blind, Placebo-Controlled Crossover Study

Raynaud phenomenon (RP) is common and occurs with severe symptoms, particularly in patients with connective tissue disease (CTD), in whom RP may lead to digital ulcerations and amputations.\(^1,2\) Medical therapy in these patients remains unsatisfactory. Administration of phosphodiesterase type 5 (PDE5) inhibitors, which inhibit the degradation of cyclic guanosine monophosphate (cGMP) in vascular smooth muscle cells, promote vasorelaxation and are a promising therapeutic approach. However, randomized controlled trials have yielded conflicting results.\(^3\) We previously had conducted an open-label study with vardenafil hydrochloride trihydrate in patients with RP as a proof of concept.\(^4\) Our objective was to confirm our findings in a double-blind, randomized, placebo-controlled trial.

Methods. Patients with primary and secondary RP without active digital ulcers were recruited from the outpatient clinics of the Departments of Dermatology and Angiology at the University Hospital Cologne, from January 2006 through August 2009. We performed a double-blind, single-center, randomized, placebo-controlled, 2-period crossover study for 6 weeks to assess the efficacy and safety of vardenafil (10 mg twice daily) for the treatment of RP. Treatments were switched after a 1-week washout phase. Patients were followed up to 4 weeks after the last drug intake. All vasoactive agents were discontinued at least 1 week before study entry. Inclusion and exclusion criteria can be reviewed in detail online (http://clinicalsite.org/zks-koe1/en/trial/490). The study was approved by the Ethics Committee of the Medical Faculty of the University of Cologne. Primary outcomes were changes in the Raynaud condition score (RCS),