Outlook. Real-time medical and scientific communication and information is already at our fingertips, literally. A breakthrough will be “bio communicators” incorporating a whole new dimension of information. Feasible potential applications include population-based cancer screening; prediction of drug response for biological or targeted therapies using genetic polymorphisms; environmental monitoring; on-site and bedside detection of critical laboratory and drug values on house calls by emergency responders; as well as clinical research with home-based collection of real-life biomedical data and FDA (Food and Drug Administration)-demanded patient-reported outcomes.

Daniel C. Baumgart, MD, PhD

Author Affiliations: Division of Gastroenterology and Hepatology, Department of Medicine, Virchow Hospital, and Charité Medical School, Humboldt-University of Berlin, Berlin, Germany.

Correspondence: Dr Baumgart, Charité Medical Center–Virchow Hospital, Medical School of the Humboldt-University, Department of Medicine Division of Gastroenterology and Hepatology, 13344 Berlin, Germany (daniel.baumgart@charite.de).

Financial Disclosure: None reported.

Online-Only Material: eTables 1 and 2 and eFigures 1, 2, and 3 are available at http://www.archinternmed.com; they provide categorized exemplary software applications and other Internet-based resources for the various use scenarios in clinical practice, research, and biomedical education discussed. They include a brief marketing description (drawn from the app vendor’s site) and clickable hyperlinks for easy access. No endorsement is made or implied. Trademarks, logos, and ad copy are the property of the respective owners.

Patients With Infectious Diseases, Overcrowding, and Health in Hospital Staff

he evidence on whether treating patients with infectious diseases increases the risk of ill health among hospital staff is limited to specific infectious agents, such as methicillin-resistant Staphylococcus aureus (MRSA).1-7 However, any infectious agent that can be transmitted by airborne transmission or during treatment contact can be acquired at the workplace. We therefore examined whether the overall prevalence of infectious diseases among patients predicts ill health in hospital staff treating them, as indicated by increased absence from work because of sickness and antibiotic medication use. Furthermore, as patient overcrowding has been suggested to increase the transmission of infectious diseases within hospitals, we also studied whether there is an association between patient overcrowding and prevalence of infectious diseases and whether the association between the prevalence of patients with infectious diseases and ill health in hospital staff is dependent on ward overcrowding.

Methods. Study participants comprised 993 physicians and nurses (mean age, 42.4 years; 93.7% female; 84.7% registered nurses) in 54 somatic disease hospital wards in 5 acute care hospitals in Finland. The assessment methods used have been described previously.8,9 Briefly, ward-level prevalence of infectious diseases (hospital and community acquired) and other patient characteristics were assessed from case records of the 1102 patients in these wards.8 Ward overcrowding was determined using routinely collected monthly figures on bed occupancy for each ward.9 These ward-level data were linked to individual records on the employee sickness absence and antibiotic medication use (purchases of medicine with the World Health Organization Anatomical Therapeutic Chemical Classification code J01) during the subsequent 150 days. The records were obtained from employers’ and nationwide health registers.9

Binary logistic regression analysis with the SAS multilevel GLIMMIX procedure was used to study the associations of ward-level exposure to infectious diseases with individual-level employee sickness absence (yes/no) and recorded antibiotic use (yes/no). The models were adjusted for employee characteristics (sex, age, occupation, type of employment, and chronic disease) and ward-level characteristics (ward specialty, mean age of patients, number of patients, mean number of invasive devices in patients, prevalence of operated patients, and patient overcrowding). To examine whether the associations were dependent on the level of patient overcrowding at the ward, the interaction term “overcrowding × exposure to infectious diseases” was entered into the model after entering the main effects of overcrowding and exposure to infectious diseases.
Infectious diseases are currently an important public health issue and a challenge for hospitals, which additionally may have problems with patient overcrowding. Our data suggest that a high prevalence of patients with infectious diseases may adversely affect the health of staff, especially when the ward is overcrowded. Ward overcrowding was also associated with higher prevalence of infectious diseases among patients. In light of these findings, minimizing overcrowding in hospital wards, especially in those with high rates of patients with infectious diseases, might not only be beneficial to the patients but also could be regarded as a target to prioritize in the promotion of health among hospital staff.

Results. Of the 54 wards, 12 (22%) were overcrowded, as indicated by bed occupancy of more than 85% during the study month. The mean overall patient infection prevalence was 25.1% vs 41.7% (P = .02) in nonovercrowded and overcrowded wards (hospital-acquired infection prevalence, 6.9% vs 14.0%; P = .05 for all, before and after adjustment for mean number of invasive devices in patients).

A total of 468 employees (47.1%) had at least 1 sickness absence spell, and 118 (11.9%) made a purchase of antibiotics during the follow-up. After adjustment for participants’ age, sex, and specialty, ward overcrowding was associated with a 1.77-fold (95% confidence interval [CI], 1.11-7.07) odds of sickness absence among employees. The OR for the association between overcrowding and overall rate of infectious diseases in predicting sickness absence among staff (P value for interaction, .004) was 2.39 (95% CI, 1.09-5.26) in overcrowded wards (P value for interaction, .41).

More detailed findings are available from the corresponding author on request.

Comment. Infectious diseases might not only be beneficial to the patients but also could be regarded as a target to prioritize in the promotion of health among hospital staff.

Author Affiliations: Finnish Institute of Occupational Health, Helsinki, Finland (Drs Virtanen, Oksanen, Vahtera, and Kivimäki and Ms Pentti); Department of Hospital Hygiene and Infection Control, Turku University Hospital, Turku, Finland (Mss Terho, Kurvinen, and Routamaa and Dr Peltonen); Department of Strategic and Defence Studies, National Defence University, Helsinki (Ms Vartti); Department of Public Health, University of Turku, Turku (Dr Vahtera); and Department of Behavioral Sciences, University of Helsinki, Helsinki, and Department of Epidemiology and Public Health, University College London Medical School, London, England (Dr Kivimäki).

Correspondence: Dr Virtanen, Finnish Institute of Occupational Health, Topeliuksenkatu 41 aA, FIN-00250 Helsinki, Finland (marianna.virtanen@ttl.fi).

Author Contributions: Drs Virtanen, Vahtera, and Kivimäki and Ms Pentti had full access to the data and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Virtanen, Terho, Oksanen, Kurvinen, Routamaa, Peltonen, and Kivimäki. Acquisition of data: Virtanen, Terho, Kurvinen, Routamaa, and Peltonen. Analysis and interpretation of data: Virtanen, Terho, Oksanen, Kurvinen, Pentti, Routamaa, Vartti, Peltonen, Vahtera, and Kivimäki. Drafting of the manuscript: Virtanen and Kivimäki. Critical revision of the manuscript for important intellectual content: Terho, Oksanen, Kurvinen, Pentti, Routamaa, Vartti, Peltonen, Vahtera, and Kivimäki. Statistical analysis: Virtanen and Pentti. Obtained funding: Vahtera and Kivimäki.

Study supervision: Peltonen, Vahtera, and Kivimäki.

Financial Disclosure: None reported.

Marianna Virtanen, PhD
Kirsti Terho, MNSc
Tuula Oksanen, MD
Tiina Kurvinen, MNSc
Jaana Pentti, BSc
Marianne Routamaa, MNSc
Anne-Marie Vartti, MSc
Reijo Peltonen, MD
Jussi Vahtera, MD
Mika Kivimaki, PhD
Funding/Support: The study was supported by grants 124322, 124271, 123621, 133535, and 129262 from the Academy of Finland; grant RO1 HL036310 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and the BUPA Foundation, United Kingdom.

Role of the Sponsors: The funders played no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Disclaimer: The views expressed in this article are those of the authors and not necessarily of the funding bodies.

In-Hospital Mobility and Length of Stay

The article by Fisher and colleagues1 provides an important contribution to the study of in-hospital ambulation of older adults and patient outcomes. Their report shows that patients who increased their walking by at least 600 steps from the first to second 24-hour day were discharged 1.7 days earlier than those who did not. Their study adds to emergent recommendations for ambulation during this critical period are needed. An important underlying assumption is that not all inactivity during hospitalization is necessary or in-