We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Article |

Mechanisms of Bacterial Resistance to Antibiotics

Laura A. Dever, RPh; Terence S. Dermody, MD
Arch Intern Med. 1991;151(5):886-895. doi:10.1001/archinte.1991.00400050040010.
Text Size: A A A
Published online


The three fundamental mechanisms of antimicrobial resistance are (1) enzymatic degradation of antibacterial drugs, (2) alteration of bacterial proteins that are antimicrobial targets, and (3) changes in membrane permeability to antibiotics. Antibiotic resistance can be either plasmid mediated or maintained on the bacterial chromosome. The most important mechanism of resistance to the penicillins and cephalosporins is antibiotic hydrolysis mediated by the bacterial enzyme β-lactamase. The expression of chromosomal β-lactamase can either be induced or stably derepressed by exposure to β-lactam drugs. Methods to overcome resistance to β-lactam antibiotics include the development of new antibiotics that are stable to β-lactamase attack and the coadministration of β-lactamase inhibitors with β-lactam drugs. Resistance to methicillin, which is stable to gram-positive β-lactamase, occurs through the alteration of an antibiotic target protein, penicillin-binding protein 2. Production of antibioticmodifying enzymes and synthesis of antibiotic-insensitive bacterial targets are the primary resistance mechanisms for the other classes of antibiotics, including trimethoprim, the sulfonamides, the aminoglycosides, chloramphenicol, and the quinolone drugs. Reduced antibiotic penetration is also a resistance mechanism for several classes of antibiotics, including the β-lactam drugs, the aminoglycosides, chloramphenicol, and the quinolones.

(Arch Intern Med. 1991;151:886-895)


Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?





Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

35 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.