0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Prolonged Beneficial Effects of a Home-Based Intervention on Unplanned Readmissions and Mortality Among Patients With Congestive Heart Failure FREE

Simon Stewart, BA, BN; Annette Joy Vandenbroek, BN; Sue Pearson, BA; John David Horowitz, MBBS, PhD
[+] Author Affiliations

From the Cardiology Unit, Queen Elizabeth Hospital/University of Adelaide, Woodville, South Australia.


Arch Intern Med. 1999;159(3):257-261. doi:10.1001/archinte.159.3.257.
Text Size: A A A
Published online

Background  A single home-based intervention (HBI) applied immediately after hospital discharge in a cohort of "high-risk" patients with congestive heart failure has been shown to decrease numbers of unplanned readmissions plus out-of-hospital deaths during a period of 6 months. The duration of this beneficial effect remains uncertain.

Methods  Hospitalized patients with congestive heart failure who had been randomly assigned to receive either usual care (n=48) or HBI 1 week after discharge (n=49) were subject to an extended follow-up of 18 months. The primary end point of the study was frequency of unplanned readmissions plus out-of-hospital deaths. Secondary end points included total hospital stay, frequency of multiple readmissions, cost of hospital-based care, and total mortality.

Results  During 18-month follow-up, HBI patients had fewer unplanned readmissions (64 vs 125; P=.02) and out-of-hospital deaths (2 vs 9; P=.02), representing 1.4 ± 1.3 vs 2.7 ± 2.8 events per HBI and usual-care patient, respectively (P=.03). The HBI patients also had fewer days of hospitalization (2.5 ± 2.7 vs 4.5 ± 4.8 per patient; P=.004) and, once readmitted, were less likely to experience 4 or more readmissions (3/31 vs 12/38; P=.03). Hospital-based costs were significantly lower among HBI patients (Aust $5100 vs Aust $10,600 per patient; P=.02). Unplanned readmission was positively correlated with 14 days or more of unplanned readmission in the 6 months before study entry (odds ratio [OR], 5.4; P=.006). Positive correlates of death were (1) non–English speaking (OR, 4.9; P=.008), (2) 14 days or more of unplanned readmission in the 6 months before study entry (OR, 4.9; P=.008), and (3) left ventricular ejection fraction of 40% or less (OR, 3.0; P=.03); conversely, assignment to HBI was a negative correlate (OR, 0.3; P=.02).

Conclusions  In this controlled study, among a cohort of high-risk patients with congestive heart failure, beneficial effects of a postdischarge HBI were sustained for at least 18 months, with a significant reduction in unplanned readmissions, total hospital stay, hospital-based costs, and mortality.

Figures in this Article

ALTHOUGH THE introduction of angiotensin-converting enzyme inhibitors has reduced morbidity and mortality rates among a large proportion of patients with congestive heart failure (CHF),15 the cost of treating these patients still represents a disproportionately large component of health care expenditure worldwide.611 Attempts to limit this expenditure (estimated to be upward of $10 billion per annum in the United States alone)11 are confounded not only by the increasing prevalence of CHF8,1114 and the ongoing management it demands, but by the pattern of recurrent hospital use among a small subset of these patients.68,1522 The treatment of such "high-cost" patients is often complicated by a combination of advanced age, presence of major concomitant disease, and intractable symptoms despite maximal therapy; it is clear that a proportion of patients receive suboptimal treatment.14,2326 Two-year mortality among such patients is as high as 80%.13,27

We have reported the beneficial effects of a postdischarge home-based intervention (HBI) on the frequency of unplanned readmissions plus out-of-hospital deaths (the primary composite end point for the study) during 6-month follow-up of a cohort of "high-risk" patients with CHF.28 We were, however, unable to demonstrate a definitive reduction in hospital-based costs or mortality among patients exposed to the study intervention. To examine the medium-term effects of the intervention on the original primary end point and, more importantly, frequency of recurrent hospital admissions, total hospital stay, cost of hospital-based care, and total mortality, we extended follow-up of all surviving patients for a further 12 months (to a maximum of 18 months after the index hospitalization).

STUDY COHORT

The study cohort of 97 patients with CHF represented the largest subgroup of medical and surgical patients (n=762) participating in a randomized controlled study examining the effects of a postdischarge home intervention.29 These patients were prospectively selected for more comprehensive follow-up because the combined presence of impaired systolic function (left ventricular ejection fraction [LVEF] ≤55%), persistent functional impairment indicative of New York Heart Association class II, III, or IV status, and a history of at least 1 admission for acute heart failure indicated that such patients were at higher risk for subsequent hospitalization and premature mortality, and therefore more likely to benefit from a postdischarge intervention. The study was approved by the hospital's Ethics of Human Research Committee, and all patients signed a consent form before study entry.

STUDY INTERVENTION

Patients were randomly assigned to either a postdischarge HBI (n=49) or to usual care (UC; n=48). Analysis of all the baseline clinical and demographic profiles of the 2 groups of patients demonstrated that the groups were well matched and receiving appropriate pharmacotherapy; a summary of their baseline characteristics is presented in Table 1. The purpose and details of the intervention are more comprehensively described in the original reports.28,29 In summary, however, HBI involved a single home visit 1 week after discharge (by a nurse and a pharmacist) to optimize medication management, identify early clinical deterioration, and intensify medical follow-up and caregiver vigilance where appropriate. During the home visits, almost all patients demonstrated inadequate knowledge of the purpose, effects, and potential adverse effects of their treatment, and approximately 50% were found to be noncompliant with prescribed medication. Approximately one third of patients were referred at this time for immediate review by their primary care physician on the basis of early clinical deterioration and/or adverse medication effects.

Table Graphic Jump LocationTable 1. Baseline Characteristics at Index Hospitalization*
STUDY END POINTS

All surviving patients were subject to 18-month follow-up after index hospitalization to determine the frequency of the composite primary end point of unplanned readmissions plus out-of-hospital deaths. Secondary end points were the proportion of patients experiencing an unplanned readmission, frequency distribution of unplanned readmissions, total days of hospitalization, emergency department attendance, overall mortality, and cost of hospital-based health care.

STATISTICAL ANALYSIS

Comparison of end point data involved the following: (1) χ2 analysis (with calculation of odds ratios [ORs] and 95% confidence intervals [CIs]) for discrete variables, (2) Mann-Whitney test for all continuous variables, and (3) log-rank test for comparison of Kaplan-Meier survival curves. Examination of the interaction between treatment mode and other potential correlates of unplanned admission and mortality involved the use of multiple logistic regression (with entry of variables at a univariate significance level of .2 and stepwise rejection of variables at the .05 level of significance). All analyses were performed on an intention-to-treat basis, with significance accepted at the level of .05 (2-sided).

During the 18 months after index hospitalization, 33 (67%) of 49 HBI patients (95% CI, 52%-80%) vs 39 (81%) of 48 UC patients (95% CI, 67%-91%) had experienced either an unplanned admission or an out-of-hospital death (P=.12). Although the 2 groups did not significantly differ in regard to the proportion of patients experiencing a primary end point, patients in the HBI group accumulated significantly fewer unplanned readmissions (64 vs 125; P=.02) and suffered fewer out-of-hospital deaths (2 vs 9; OR, 5.4; 95% CI, 1.0-39; P=.02). The combined total of primary end points was therefore 66 vs 134 for the HBI and UC groups, respectively (1.4 ± 1.3 vs 2.7 ± 2.8 events per patient; P=.03) (Figure 1).

Place holder to copy figure label and caption
Figure 1.

Cumulative total of unplanned readmissions plus out-of-hospital deaths during 18 months of follow-up (Mann-Whitney test).

Graphic Jump Location

Overall, HBI patients required fewer days of hospitalization (both unplanned and elective) than UC patients (10.5 ± 14.4 vs 21.1 ± 24.1 days per patient; P=.02) in addition to accumulating fewer attendances at the emergency department (2.5 ± 2.7 vs 4.5 ± 4.8 per patient; P=.004). On the basis of this reduction in hospital stay and comparable outpatient clinic costs, the calculated cost of hospital-based care per patient was significantly lower for the HBI group (Aust $5100 ± $6800 vs Aust $10,600 ± $13,000; P=.02). The cost of the original home intervention was Aust $190 per HBI patient.

Analysis of the frequency distribution of unplanned readmissions showed that UC patients, once readmitted, were significantly more likely to experience 4 or more readmissions during study follow-up (12/38 vs 3/31; OR, 4.2; 95% CI, 1.0-22.0; P=.03). Figure 2 shows the frequency distribution of unplanned readmissions for the 2 groups. Overall, 42% (95% CI, 35%-49%) of all unplanned readmissions for the entire cohort were associated with a primary diagnosis of acute heart failure, the remainder being primarily associated with either an acute ischemic syndrome or acute respiratory failure secondary to chronic airway limitation. Once readmitted, UC patients were significantly more likely to require 3 or more admissions for heart failure (8/21 vs 1/18; P=.004).

Place holder to copy figure label and caption
Figure 2.

Frequency distribution of unplanned readmissions during 18 months of follow-up. HBI indicates home-based intervention; UC, usual care.

Graphic Jump Location

Patients assigned to HBI were also more likely to survive the 18-month period after index hospitalization; 11 (22%) of 49 HBI patients (95% CI, 10%-34%) vs 20 (42%) of 48 UC patients (95% CI, 30%-49%) died during follow-up (OR, 0.33; 95% CI, 0.12-0.88; P=.05) (Figure 3).

Place holder to copy figure label and caption
Figure 3.

Kaplan-Meier curves for cumulative survival during 18 months of follow-up (log-rank test for comparison of survival curves).

Graphic Jump Location

On the basis of initial univariate analysis, the following variables were subjected to multiple logistic regression to determine potential correlates of unplanned readmission: (1) previous admission(s) for acute heart failure, (2) number of days of unplanned hospitalization in the 6 months before study follow-up, (3) plasma albumin concentration on hospital discharge, (4) New York Heart Association class on hospital discharge, and (5) study group. Of these variables, greater hospital use in the 6 months before study follow-up proved to be the only independent, positive correlate of unplanned readmission within 18 months of index hospitalization (Table 2). Similarly, the following variables were examined as potential correlates of mortality: (1) duration of treatment for CHF, (2) number of admissions for acute heart failure, (3) number of days of unplanned hospitalization in the 6 months before study follow-up, (4) LVEF, (5) New York Heart Association class on hospital discharge, (6) English-speaking vs non–English-speaking background, and (7) study group. Of these variables, greater hospital use in the 6 months before study follow-up, a non–English-speaking background, and lower LVEF were independent, positive correlates of 18-month mortality; conversely, assignment to HBI was a negative correlate (Table 3).

Table Graphic Jump LocationTable 2. Correlates of Unplanned Readmission During 18-Month Follow-up
Table Graphic Jump LocationTable 3. Correlates of Mortality During 18-Month Follow-up

We have reported the beneficial effects of a postdischarge home intervention on the frequency of unplanned readmissions plus out-of-hospital deaths during 6-month follow-up of a cohort of "high-risk" patients with CHF.28 The success of this strategy in reducing subsequent hospital use (42% in comparison with UC patients) was largely mediated via a reduction in repeated admissions for acute heart failure. However, perhaps because of a small sample size, the skewed distribution of costs among UC patients, and limited duration of follow-up, the previous results demonstrated neither definite cost savings nor improved survival.

The current analysis of outcomes among this cohort of patients after 18 months of follow-up was undertaken to determine whether there was any marked accentuation or attenuation of beneficial effects of HBI in the medium term. In this respect, the results of the extended follow-up demonstrated continued benefit in regard to the primary end point of frequency of unplanned readmissions plus out-of-hospital deaths; HBI patients accumulated approximately 50% fewer end points. The data also suggested that the 2 groups continued to diverge in regard to accumulation of these end points in the 12 to 18 months after the single home visit (Figure 1). Although there was a trend toward fewer HBI patients requiring an unplanned readmission during study follow-up (31/49 vs 38/48; P=.08), the continued differential between groups in accumulating unplanned readmissions potentially reflects the selective effect of HBI on patients otherwise likely to have repeated unplanned readmissions. Rich et al19 also reported that post hoc analysis of the effects of a similar, but more intensive, intervention that was implemented for 3 months after discharge suggested that the beneficial effects of the intervention lasted up to 1 year, although it is not clear whether this was mediated via a sustained reduction in multiple readmissions among intervention patients.19

With larger numbers of patients requiring hospitalization during the extended follow-up, skewness and variability of accumulated costs were less accentuated, and we were able to demonstrate that the approximate 50% reduction in hospital stay among HBI patients translated to a significant reduction in hospital-based costs of a similar magnitude. Once again, however, the subset of patients requiring repeated readmissions contributed disproportionately to the overall costs for their respective groups.

Although the difference in group mortality rates just reached statistical significance, the magnitude of the apparent reduction in mortality among HBI patients was large (approximately 50%). In our original analysis, out-of-hospital death was included in the primary end point to partially adjust for the fact that patients would no longer require hospital admission. However, the frequency of out-of-hospital death alone has proved to be far greater than expected, with significantly more of these events occurring among UC patients, both at 6 months in the original heterogeneous cohort of hospitalized patients29 and at 18 months among this subset of patients with CHF, proving to be the primary difference in both cases in regard to the reduced overall mortality among HBI patients. Such a proportional improvement in survival rates, if verified in larger studies, would be more than comparable with those reported in the original (and larger) angiotensin-converting enzyme inhibitor trials.4,5 The 18-month mortality rate among the UC group in this study was somewhat greater than that reported in more recent clinical trials that have included carefully selected patients with heart failure receiving angiotensin-converting enzyme inhibitors as standard therapy and generally lower LVEFs.30,31 However, the survival profile of UC patients in the current study, at both 6 and 18 months, is comparable with that reported at 6 and 12 months among similar cohorts of hospitalized patients with CHF included in 3 recently reported studies.22,26,32 Furthermore, multivariate analysis demonstrated that the improved survival rate associated with the HBI was independent of other "expected" determinants of mortality, including lower LVEF and a history of more prolonged hospital stay.

Many forms of therapeutic intervention have been shown to be highly effective for a short period, but to have no significant beneficial impact beyond the first few days or weeks after withdrawal of the therapeutic agent.33,34 How and why is it possible for a single posthospitalization intervention to continue to exert a beneficial effect on readmissions and mortality for at least 18 months after implementation? On the basis of a preliminary study,35 we anticipated that an early posthospitalization HBI would not only be beneficial in detecting clinical deterioration likely to lead to short-term hospital readmission(s), but detect hitherto unknown problems likely to contribute to poorer longer-term outcomes. Although we have no direct evidence of mechanisms of beneficial effect of the current HBI, the magnitude of problems detected during home visits requiring remedial action, many of which have been identified previously as contributing to unplanned hospitalization (noncompliance with and/or adverse effects of treatment regimen, early clinical deterioration, and suboptimal use of medical care, especially among non–English-speaking patients), is consistent with 2 previous reports on the mechanisms of beneficial effect of interventions that involve a home visit.18,36 As regards improved survival, it is possible that a combination of increased vigilance of caregivers, improved compliance, and increased awareness of the therapeutic goals of treatment and better use of available medical care among HBI patients led to a reduced incidence of acute deterioration and death before hospital care could be accessed. However, the precise mechanism(s) of beneficial effect of the HBI in this regard is unlikely to be elucidated.

The fact that we are unable to propose the exact mechanism(s) of beneficial effect of HBI underlines some of the limitations of both the original and extended analyses of this cohort of patients with CHF, although this problem is common to other interventions incorporating a multifaceted approach.23,36 This study represents a subanalysis of the outcomes of a limited number of patients with CHF, and we have no data regarding functional status and quality of life among surviving patients. Possible refinements of this intervention would include (1) more specific components of education in regard to optimal diet, fluid management, and exercise for patients with CHF; (2) prospective identification of the subset of patients at risk of recurrent admissions; and (3) repeated HBI for those patients with recurrent readmissions despite initial intervention.

Nevertheless, this randomized controlled study (to our knowledge) represents the first report of a nonpharmacological intervention improving survival among hospitalized patients with CHF while significantly reducing hospital readmissions. If the efficacy of this relatively novel approach to treating patients with CHF is confirmed in a prospective randomized controlled trial, it would represent an attractive and relatively cheap means to both improve health outcomes among such patients and deliver significant cost savings.

Accepted for publication May 26, 1998.

Mr Stewart received a National Heart Foundation of Australia Postgraduate Medical Research Scholarship.

Reprints: John David Horowitz, MBBS, PhD, Cardiology Unit, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville, South Australia, 5011 (e-mail: jhorowitz@medicine.adelaide.edu.au).

Cohn  JNJohnson  GZiesche  S A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325293- 302
Link to Article
Captopril Multicentre Research Group, A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J Am Coll Cardiol. 1983;2755- 763
Link to Article
Pfeffer  MABraunwald  EMoyle  LA  et al.  Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement (SAVE) trial. N Engl J Med. 1992;327669- 677
Link to Article
The CONSENSUS Trial Study Group, Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;3161429- 1435
Link to Article
The SOLVD Investigators, Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325293- 302
Link to Article
Garg  RPacker  MPitt  BYusuf  S Heart failure in the 1990's: evolution of a major public health problem in cardiovascular medicine. J Am Coll Cardiol. 1993;22(suppl A)3A- 5A
Link to Article
Hennen  JKrumholz  HMRadford  MJ Twenty most frequent DRG groups among Medicare inpatients age 65 or older in Connecticut hospitals, fiscal years 1991, 1992, and 1993. Conn Med. 1995;5911- 15
McMurray  JMcDonagh  TMorrison  CEDargie  HJ Trends in hospitalization for heart failure in Scotland 1980-1990. Eur Heart J. 1993;141158- 1162
Link to Article
Australian Institute of Health and Welfare, Australian Hospital Statistics 1995-96.  Canberra, Australia Australian Institute of Health and Welfare1997;Health Services Series No. 10.
Croft  JBGiles  WHPollard  RACasper  MLAnda  RFLivengood  JR National trends in the initial hospitalization for heart failure. J Am Geriatr Soc. 1997;45270- 275
Rich  MW Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc. 1997;45968- 974
Mark  DB Economics of treating heart failure. Am J Cardiol. 1997;80 ((8B)) 33H- 38H
Link to Article
Ho  KKPinsky  JLKannel  WBLevy  D The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol. 1993;22 (4) (suppl A)6A- 13A
Link to Article
Stafford  RSSaglam  DBlumenthal  D National patterns of angiotensin-converting enzyme inhibitor use in congestive heart failure. Arch Intern Med. 1997;1572460- 2464
Link to Article
Krumholz  HMParent  EMTu  N  et al.  Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch Intern Med. 1997;15799- 104
Link to Article
Gooding  JJette  AM Hospital readmissions among the elderly. J Am Geriatr Soc. 1985;33595- 601
Naylor  MBrooten  DJones  RLavizzo-Mourey  RMezey  MPauley  M Comprehensive discharge planning for the hospitalized elderly. Ann Intern Med. 1994;120999- 1006
Link to Article
Rich  MWGray  DBBeckham  VWittenberg  CLuther  P Effect of a multi-disciplinary intervention on medication compliance in elderly patients with congestive heart failure. Am J Med. 1996;101270- 276
Link to Article
Rich  MWBeckham  VWittenberg  CLeven  CLFreedland  KECarney  RM A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995;3331190- 1195
Link to Article
Vinson  JMRich  MWSperry  JCShah  ASMcNamara  T Early readmission of elderly patients with congestive heart failure. J Am Geriatr Soc. 1990;381290- 1295
Graves  EJ 1989 Summary: National Hospital Discharge Survey.  Hyattsville, Md National Center for Health Statistics1991;Advance Data From Vital and Health Statistics, No. 199.
Burns  RBMcCarthy  EPMoskowitz  MAAsh  AKane  RLFinch  M Outcomes for older men and women with congestive heart failure. J Am Geriatr Soc. 1997;45276- 280
Fonarow  GCStevenson  LWWalden  JA  et al.  Impact of a comprehensive heart failure management program on hospital readmissions and functional status of patients with advanced heart failure. J Am Coll Cardiol. 1997;30725- 732
Link to Article
Edep  MEShah  NBTateo  IMMassie  BM Difference between primary care physicians and cardiologists in management of congestive heart failure: relation to practice guidelines. J Am Coll Cardiol. 1997;30518- 526
Link to Article
Pearson  TAPeters  TD The treatment gap in coronary artery disease and heart failure: community standards and the post-discharge patient. Am J Cardiol. 1997;80 ((8B)) 45H- 52H
Link to Article
Reis  SEHolubkov  REdmundowicz  D  et al.  Treatment of patients admitted to the hospital with congestive heart failure: specialty-related disparities in practice patterns and outcomes. J Am Coll Cardiol. 1997;30733- 738
Link to Article
Stevenson  WStevenson  LMiddlekauff  H  et al.  Improving survival for patients with advanced heart failure: a study of 737 consecutive patients. J Am Coll Cardiol. 1995;261417- 1423
Link to Article
Stewart  SPearson  SHorowitz  JD Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care. Arch Intern Med. 1998;1581067- 1072
Link to Article
Stewart  SPearson  SLuke  CGHorowitz  JD Effects of a home-based intervention on unplanned readmissions and out-of-hospital deaths. J Am Geriatr Soc. 1998;46174- 180
The Digitalis Investigation Group, The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;333523- 533
Prospective Randomized Amlodipine Survival Evaluation Study Group, Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med. 1996;3351107- 1114
Link to Article
Lowe  JMCandlish  PMHenry  DAWlodarcyk  JHHeller  RFFletcher  PJ Management and outcomes of congestive heart failure patients: a prospective study of hospitalised patients. Med J Aust. 1998;168115- 118
The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) IIb Investigators, A comparison of recombinant hirudin with heparin for the treatment of acute coronary syndromes. N Engl J Med. 1996;335775- 782
Link to Article
Swahn  EWallentin  LFRISC Study Group, Low-molecular-weight heparin (Fragmin) during instability in coronary artery disease (FRISC). Am J Cardiol. 1997;80 ((5A)) 25E- 29E
Link to Article
Stewart  SDavey  MDesanctis  M  et al.  Home medication management: a study of patient post-hospitalisation. Aust Pharmacist. 1995;14472- 476
Alessi  CAStuck  AEAronow  HU  et al.  The process of care in preventive in-home comprehensive geriatric assessment. J Am Geriatr Soc. 1997;451044- 1050

Figures

Place holder to copy figure label and caption
Figure 1.

Cumulative total of unplanned readmissions plus out-of-hospital deaths during 18 months of follow-up (Mann-Whitney test).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Frequency distribution of unplanned readmissions during 18 months of follow-up. HBI indicates home-based intervention; UC, usual care.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Kaplan-Meier curves for cumulative survival during 18 months of follow-up (log-rank test for comparison of survival curves).

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Baseline Characteristics at Index Hospitalization*
Table Graphic Jump LocationTable 2. Correlates of Unplanned Readmission During 18-Month Follow-up
Table Graphic Jump LocationTable 3. Correlates of Mortality During 18-Month Follow-up

References

Cohn  JNJohnson  GZiesche  S A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325293- 302
Link to Article
Captopril Multicentre Research Group, A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J Am Coll Cardiol. 1983;2755- 763
Link to Article
Pfeffer  MABraunwald  EMoyle  LA  et al.  Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement (SAVE) trial. N Engl J Med. 1992;327669- 677
Link to Article
The CONSENSUS Trial Study Group, Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;3161429- 1435
Link to Article
The SOLVD Investigators, Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325293- 302
Link to Article
Garg  RPacker  MPitt  BYusuf  S Heart failure in the 1990's: evolution of a major public health problem in cardiovascular medicine. J Am Coll Cardiol. 1993;22(suppl A)3A- 5A
Link to Article
Hennen  JKrumholz  HMRadford  MJ Twenty most frequent DRG groups among Medicare inpatients age 65 or older in Connecticut hospitals, fiscal years 1991, 1992, and 1993. Conn Med. 1995;5911- 15
McMurray  JMcDonagh  TMorrison  CEDargie  HJ Trends in hospitalization for heart failure in Scotland 1980-1990. Eur Heart J. 1993;141158- 1162
Link to Article
Australian Institute of Health and Welfare, Australian Hospital Statistics 1995-96.  Canberra, Australia Australian Institute of Health and Welfare1997;Health Services Series No. 10.
Croft  JBGiles  WHPollard  RACasper  MLAnda  RFLivengood  JR National trends in the initial hospitalization for heart failure. J Am Geriatr Soc. 1997;45270- 275
Rich  MW Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc. 1997;45968- 974
Mark  DB Economics of treating heart failure. Am J Cardiol. 1997;80 ((8B)) 33H- 38H
Link to Article
Ho  KKPinsky  JLKannel  WBLevy  D The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol. 1993;22 (4) (suppl A)6A- 13A
Link to Article
Stafford  RSSaglam  DBlumenthal  D National patterns of angiotensin-converting enzyme inhibitor use in congestive heart failure. Arch Intern Med. 1997;1572460- 2464
Link to Article
Krumholz  HMParent  EMTu  N  et al.  Readmission after hospitalization for congestive heart failure among Medicare beneficiaries. Arch Intern Med. 1997;15799- 104
Link to Article
Gooding  JJette  AM Hospital readmissions among the elderly. J Am Geriatr Soc. 1985;33595- 601
Naylor  MBrooten  DJones  RLavizzo-Mourey  RMezey  MPauley  M Comprehensive discharge planning for the hospitalized elderly. Ann Intern Med. 1994;120999- 1006
Link to Article
Rich  MWGray  DBBeckham  VWittenberg  CLuther  P Effect of a multi-disciplinary intervention on medication compliance in elderly patients with congestive heart failure. Am J Med. 1996;101270- 276
Link to Article
Rich  MWBeckham  VWittenberg  CLeven  CLFreedland  KECarney  RM A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med. 1995;3331190- 1195
Link to Article
Vinson  JMRich  MWSperry  JCShah  ASMcNamara  T Early readmission of elderly patients with congestive heart failure. J Am Geriatr Soc. 1990;381290- 1295
Graves  EJ 1989 Summary: National Hospital Discharge Survey.  Hyattsville, Md National Center for Health Statistics1991;Advance Data From Vital and Health Statistics, No. 199.
Burns  RBMcCarthy  EPMoskowitz  MAAsh  AKane  RLFinch  M Outcomes for older men and women with congestive heart failure. J Am Geriatr Soc. 1997;45276- 280
Fonarow  GCStevenson  LWWalden  JA  et al.  Impact of a comprehensive heart failure management program on hospital readmissions and functional status of patients with advanced heart failure. J Am Coll Cardiol. 1997;30725- 732
Link to Article
Edep  MEShah  NBTateo  IMMassie  BM Difference between primary care physicians and cardiologists in management of congestive heart failure: relation to practice guidelines. J Am Coll Cardiol. 1997;30518- 526
Link to Article
Pearson  TAPeters  TD The treatment gap in coronary artery disease and heart failure: community standards and the post-discharge patient. Am J Cardiol. 1997;80 ((8B)) 45H- 52H
Link to Article
Reis  SEHolubkov  REdmundowicz  D  et al.  Treatment of patients admitted to the hospital with congestive heart failure: specialty-related disparities in practice patterns and outcomes. J Am Coll Cardiol. 1997;30733- 738
Link to Article
Stevenson  WStevenson  LMiddlekauff  H  et al.  Improving survival for patients with advanced heart failure: a study of 737 consecutive patients. J Am Coll Cardiol. 1995;261417- 1423
Link to Article
Stewart  SPearson  SHorowitz  JD Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care. Arch Intern Med. 1998;1581067- 1072
Link to Article
Stewart  SPearson  SLuke  CGHorowitz  JD Effects of a home-based intervention on unplanned readmissions and out-of-hospital deaths. J Am Geriatr Soc. 1998;46174- 180
The Digitalis Investigation Group, The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;333523- 533
Prospective Randomized Amlodipine Survival Evaluation Study Group, Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med. 1996;3351107- 1114
Link to Article
Lowe  JMCandlish  PMHenry  DAWlodarcyk  JHHeller  RFFletcher  PJ Management and outcomes of congestive heart failure patients: a prospective study of hospitalised patients. Med J Aust. 1998;168115- 118
The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) IIb Investigators, A comparison of recombinant hirudin with heparin for the treatment of acute coronary syndromes. N Engl J Med. 1996;335775- 782
Link to Article
Swahn  EWallentin  LFRISC Study Group, Low-molecular-weight heparin (Fragmin) during instability in coronary artery disease (FRISC). Am J Cardiol. 1997;80 ((5A)) 25E- 29E
Link to Article
Stewart  SDavey  MDesanctis  M  et al.  Home medication management: a study of patient post-hospitalisation. Aust Pharmacist. 1995;14472- 476
Alessi  CAStuck  AEAronow  HU  et al.  The process of care in preventive in-home comprehensive geriatric assessment. J Am Geriatr Soc. 1997;451044- 1050

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 136

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles