0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Angiotensin-Converting Enzyme Insertion/Deletion Gene Polymorphic Variant as a Marker of Coronary Artery Disease:  A Meta-analysis FREE

Elias Zintzaras, MSc, PhD; Gowri Raman, MD; Georgios Kitsios, MD; Joseph Lau, MD
[+] Author Affiliations

Author Affiliations: Center for Clinical Evidence Synthesis, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts (Drs Zintzaras, Raman, and Lau); and Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece (Drs Zintzaras and Kitsios).


Arch Intern Med. 2008;168(10):1077-1089. doi:10.1001/archinte.168.10.1077.
Text Size: A A A
Published online

Background  Many studies have investigated the association between the angiotensin-converting enzyme (ACE) gene insertion (I)/deletion (D) polymorphic variant and coronary artery disease (CAD). However, the evidence is inadequate to draw robust conclusions because most studies were generally small and conducted in heterogeneous samples. To shed light on these inconclusive findings, we conducted a meta-analysis of studies relating the ACE I/D polymorphic variant to the risk of CAD.

Methods  We searched the PubMed database for English-language articles on CAD in humans. We estimated summary odds ratios and explored potential sources of heterogeneity and bias.

Results  The 118 studies chosen for the analysis involved 43 733 cases with CAD and 82 606 controls. The heterogeneity between studies was significant. When we compared homozygotes with the D and I alterations, the ACE I/D polymorphic variant was associated with a 25% increased risk of CAD (odds ratio, 1.25; 95% confidence interval, 1.16-1.35). Subgroup analyses for myocardial infarction, diabetes mellitus, male sex, white race, East Asian subjects, and Turkish subjects showed significant associations. No association was found in other racial/ethnic groups, in women, in premature cases, or in cases with low levels of risk factors. The major sources of heterogeneity were due to racial/ethnic diversity, genotyping procedure, and age matching. Cumulative meta-analysis for the allelic contrast showed a trend of association as information accumulated. There was a differential magnitude of effect in large vs small studies.

Conclusions  The meta-analysis demonstrated evidence of a modest positive association between ACE I/D polymorphic variant and CAD. The meta-analysis also highlights the heterogeneity of reported results, considerable gaps in research, and the need for future studies focused on certain high-risk patient populations.

Figures in this Article

Coronary artery disease (CAD) is the leading cause of death in industrialized countries. The broad clinical spectrum of CAD includes angina and myocardial infarction (MI) and is caused by atherosclerosis, a degenerative disease condition affecting the arterial vessel walls. Apart from some rare mendelian forms of CAD, most CAD is believed to have a multifactorial genetic basis involving a number of genes and environmental factors that interact to determine whether a person will develop the disease.1,2 Several types of environmental factors predicting the risk of atherogenesis have been recognized, such as age, male sex, family history, hypertension, dyslipidemia, smoking history, and presence of diabetes mellitus.3 However, disentangling the genetic component of CAD remains a great challenge.

The primary area of research of genetic predispositions to CAD has focused on genes that participate in well-characterized pathophysiological pathways of the disease, such as the renin-angiotensin-aldosterone system.4 Several strands of evidence implicate the angiotensin I–converting enzyme (ACE) as an important modulator of atherosclerosis. Increased serum levels of ACE have been associated with CAD5 but, more importantly, increased ACE vascular activity has been identified in culprit lesions in acute coronary syndromes and restenotic plaques after coronary interventions.6,7 Moreover, the role of ACE inhibition in primary and secondary prevention of CAD has been well established by large clinical trials.8,9 The human ACE gene is located on chromosome 17q23. A polymorphic variant in intron 16 of this gene is characterized by an insertion (I) or a deletion (D) of a 287–noncoding base pair Alu repeat sequence.10 Early studies demonstrated a strong correlation between the D allele and levels of circulating, intracellular, and heart tissue activity of ACE.1114 Because both alleles are considered to have codominant effects on ACE levels, individuals who are homozygous for the D allele have the highest levels of the enzyme, those homozygous for the I allele have the lowest, and heterozygous individuals have an intermediate level. Based on these effects, genotype-corrected reference values for serum ACE levels have been recently proposed, although significant overlapping between genotypes exists.15 Numerous studies have investigated the relationships between the ACE I/D gene polymorphic variant and several outcomes related to CAD, such as MI,1620 coronary restenosis after angioplasty,21 and ischemic heart failure.22

The available evidence from the genetic association studies published to date on the association between CAD and the ACE I/D gene polymorphic variant was weak, owing to sparseness of data or disagreements among studies. Each of these studies typically involved a few cases and controls and therefore was neither adequate nor sufficiently informative to clearly demonstrate an association.23 Furthermore, the studies varied markedly by including different populations, sampling strategies, and genotyping procedures.2426

We conducted a meta-analysis to shed some light on these contradictory results and to decrease the uncertainty of the effect size of the estimated risk.27,28 Five previously published meta-analyses on the association of ACE I/D and CAD included the relatively scarce information available at that time1620 and failed to confirm a strong and consistent association. Individual studies demonstrated significant heterogeneity in their results, attributed mainly to racial differences and study design differences. We present herein the results of a large meta-analysis of published data investigating the association between ACE I/D and CAD for various genetic contrasts, in which we explored the between-studies heterogeneity and the existence of potential bias.

STUDY SELECTION

We conducted a comprehensive search of the PubMed database from its inception through February 2007. We combined search terms for ACE genotype and CAD. Search terms included ACE or angiotensin-converting enzyme; gene, polymorphism, or genetic variant; and myocardial infarction, myocardial infarct, coronary artery disease, coronary heart disease, ischemic heart disease, myocardial ischemia, angina, acute coronary syndrome, acute coronary syndromes, ACS, coronary calcification, coronary flow reserve, ischemic heart failure, heart failure, or ischemic cardiomyopathy. The retrieved studies were manually screened in their entirety to assess their appropriateness for eligibility criteria. All references cited in the studies were also reviewed to identify additional published articles not indexed in the PubMed database. Case reports, editorials, and review articles were excluded. The search was restricted to English-language articles of studies in humans.

The meta-analysis included case-control, cross-sectional, and cohort studies that fulfilled the following inclusion criteria: (1) provided cases of CAD and control subjects without CAD, (2) provided information on genotype frequency, and (3) use of validated molecular methods for genotyping. Cases were considered CAD, with the diagnosis based on angiographic or clinical criteria (details available from the authors on request). In studies with overlapping cases or controls, the most recent and/or the largest study with extractable data was included in the meta-analysis. Studies investigating progression, severity, phenotype modification, response to treatment, or survival were excluded from this review. Genome scans investigate linkages and were also excluded. In addition, family-based association studies were excluded because they use different study designs.29,30

DATA EXTRACTION

Two investigators (E.Z. and G.K.) independently extracted data, and disagreements were resolved through consensus. The extracted data included the year of publication, ethnicity of the study population, study end point, criteria of diagnosis, demographics, matching, clinical status of controls, genotyping method, analysis for subgroups of interest (ie, individuals with diabetes mellitus, with premature disease, or at low risk and sex) (details available from the authors on request), and the genotype distribution of cases and controls for the ACE I/D polymorphic variant (details available from the authors on request). The frequencies of the alleles were extracted or calculated for cases and controls. When available, we recorded whether the genotyping in each study was blinded to clinical status. All data were extracted from published articles, and we did not contact individual authors for further information.

DATA SYNTHESIS

We performed a meta-analysis to investigate the association between ACE I/D and CAD for the allele contrast (D vs I), the recessive (DD vs ID and II), dominant (DD and ID vs II), additive (DD vs II), and codominant (ID vs DD and II) models. We calculated the overall odds ratio (OR) with the corresponding 95% confidence interval (CI) using the random effects (DerSimonian and Laird) model.31 Statistical heterogeneity across the various studies was tested with the use of the Q statistic.3033 A P < .10 indicated a significant statistical heterogeneity across studies, allowing for the use of the random effects model.

We also performed a cumulative and recursive cumulative meta-analysis27,28,34,35 to provide a framework for updating a genetic effect from all studies and to measure how much the genetic effect changes as evidence accumulates. Thus, cumulative meta-analysis indicates the trend in estimated risk effect, and recursive cumulative meta-analysis indicates the stability in risk effect. In cumulative meta-analysis, studies were chronologically ordered by publication year, then the pooled ORs were obtained at the end of each year (ie, at each information step). In recursive cumulative meta-analysis, the relative change in pooled OR in each information step (pooled OR in the next year/pooled OR in the current year) was calculated. A differential magnitude of effect comparing large vs small studies for the allelic contrast was verified using the Egger regression test and the Begg-Mazumdar test, based on the Kendall τ.36,37 We compared the ORs of the levels of quality characteristics (ie, consistency of levels) using the z test.

For additional analyses, the cases and controls were subgrouped on the basis of their susceptibility to MI, racial/ethnic descent, sex, age at onset (men, < 55 years; women, < 65 years),29 low risk of CAD, and the presence of diabetes mellitus (details available from the authors on request). Racial/ethnic descent was categorized into white, East Asian, black, Turkish, Latino, East Indian, and mixed population subgroups.38 However, the consistency of genetic effects across these traditionally defined racial/ethnic groups does not necessarily mean that race-specific genetic effects are exactly the same.27,39

Study quality was assessed by performing subgroup or sensitivity analysis on the components of study quality that are considered important in the context of this meta-analysis.40 As quality components, the following variables could be considered: reporting of the complete genotype distribution, definition of CAD (angiographically proved CAD provides a stricter phenotype definition), age matching, genotyping procedure (genotyping with insertion-specific primers41 prevents mistyping of ID to DD and is thus considered to be more accurate compared with the originally described method by Rigat et al10), blindness of genotyping, and Hardy-Weinberg equilibrium (HWE) of the genotype distribution in the control group. Hardy-Weinberg equilibrium is a surrogate to assess study quality, and the effect of HWE is associated with problems in the design and conduct of genetic association studies.27,42 Thus, studies with controls not in HWE or studies not reporting enough information to evaluate the HWE were subjected to a sensitivity analysis.34,43 Furthermore, we performed a meta-analysis excluding all cross-sectional and cohort studies. Sources of heterogeneity were explored with the component approach by investigating the consistency between subgroups. In addition, a meta-regression procedure was adopted.27,31,40

Analyses were performed using commercially available software (StatsDirect [StatsDirect Ltd, Cheshire, England], Visual Fortran 90 [Compaq, Houston, Texas], and GLIM3.77 [Royal Statistical Society, Oxford, England]).4450 Hardy-Weinberg equilibrium was analyzed using an exact test according to Weir.51

ELIGIBLE STUDIES

The literature search identified 916 citations. All citations identified through the literature search were independently screened by two of us (E.Z. and G.K.) according to the eligibility criteria. Two hundred fifty-nine articles were retrieved and evaluated against the same criteria. Data from 116 articles that investigated the association between the ACE I/D polymorphic variant and CAD met the inclusion criteria and were included in the meta-analysis.5,17,52165Figure 1 presents a flowchart of retrieved studies and studies excluded, with specification of reasons. Two articles provided ethnic data on 2 separate studies each.75,159 Thus, data were obtained from 118 studies. Data were extracted by two of us (G.K. and E.Z.), and disagreements were resolved by consensus.

Place holder to copy figure label and caption
Figure 1.

Flowchart of retrieved studies and studies that were excluded, with specification of the reasons.

Graphic Jump Location

The studies were published from 1992 through 2007. A description of studies meeting eligibility criteria is provided in Table 1, and a list of details abstracted from the studies is available from the authors on request.

Table Graphic Jump LocationTable 1. Description of Studies Meeting Eligibility Criteria
SUMMARY STATISTICS

The studies provided 43 733 cases with CAD and 82 606 controls free of CAD; of these, 18 139 cases had MI. In the cases and controls, the D allele was the most common. In cases and controls, the frequency of genotype ID was the highest, whereas the frequency of genotype II was the lowest. Ten studies did not provide data for all genotypes separately.60,85,97,107,115,135,138,147,155,161 The genotype distributions are available from the authors on request.

The distribution of genotypes in the control group deviated from HWE in 15 studies,75,77,82,8789,101,132,136,141,143,145,150,160 whereas HWE deviation could not be tested for all studies.60,85,97,107,115,135,138,147,155,161 Because a lack of HWE indicates possible genotyping errors and/or population stratification,44,51,166 we performed a sensitivity analysis excluding these studies. In addition, articles where HWE could not be assessed were treated as studies that deviate from HWE in the sensitivity analysis.44

MAIN RESULTS AND SUBGROUP AND SENSITIVITY ANALYSES

Table 2 shows the results for the association between the ACE I/D gene polymorphic variant and the risk of CAD (additional details available from the authors on request).

Table Graphic Jump LocationTable 2. Odds Ratios (ORs) and Heterogeneity Results for the Genetic Contrasts of ACE I/D Gene Polymorphic Variation for CAD and Subgroup Populations

The main analysis for investigating the association between the D allele and the risk of CAD relative to the I allele revealed significant heterogeneity (P < .01) among the 109 studies, and the random effects pooled OR was significant (random effects OR, 1.12 [95% CI, 1.07-1.16]). The recessive and dominant models also showed significant association (random effects ORs, 1.16 [95% CI, 1.10-1.24] and 1.15 [95% CI, 1.09-1.22], respectively). The additive model produced a significant association (random effects OR, 1.25 [95% CI, 1.16-1.35]) and the codominant model produced a nonsignificant association (random effects OR, 0.99 [95% CI, 0.94-1.04]) as anticipated. Thus, the ACE I/D polymorphic variant contributes to CAD susceptibility under an additive model. Exclusion of cross-sectional and population-based cohort studies did not alter the pattern of results. Studies involving only cases with MI derived the same pattern of results as that found in the main analysis in CAD.

In subgroup analysis by ethnicity (Table 3), white and Turkish subjects showed significance under an additive model with a magnitude of effects similar to that of the main analysis, whereas East Asian subjects showed significance under a recessive model for the D allele (random effects OR, 1.38 [95% CI, 1.09-1.76]). Black, Latino, and East Indian subjects showed no significant associations; however, very few studies were performed for these populations, and the results should be interpreted with caution.

Table Graphic Jump LocationTable 3. Odds Ratios (ORs) and Heterogeneity Results for the Genetic Contrasts of the ACE I/D Gene Polymorphic Variant for CAD in Differen Racial/Ethnic Populations

In women, the ACE I/D gene polymorphic variant was not associated with susceptibility to CAD; however, in men there was a significant risk. In premature cases and in cases with low risk factors, the ACE I/D polymorphic variant was not associated with CAD, whereas in diabetic subjects there was a high risk of CAD under a recessive model (random effects OR, 1.39 [95% CI, 1.12-1.73]).

HETEROGENEITY, STUDY QUALITY, AND POTENTIAL BIAS

The cumulative meta-analysis for the allelic contrast showed a trend of association as information accumulated (Figure 2). In recursive cumulative meta-analysis for the allelic contrast, the relative change in the random effects ORs fluctuated around 1.00 until 1998 and then stabilized, indicating that there is sufficient evidence for investigating the association (Figure 3).

Place holder to copy figure label and caption
Figure 2.

Results of the cumulative meta-analysis. The random effects pooled odds ratio with the corresponding 95% confidence interval at the end of each information step is shown.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Results of the recursive cumulative meta-analysis. The relative change in random effects pooled odds ratio (OR) in each information step (OR in the next year/OR in the current year) for the allelic contrast is shown.

Graphic Jump Location

Subgroup and sensitivity analyses for the components of study quality (Figure 4) for the allelic contrast showed that exclusion of studies that violated HWE did not alter the overall results, and the same was shown for studies not reporting the complete genotype distribution. Use of an angiographically based definition of CAD and study blindness effects showed consistent results in their levels (P = .56 and P = .17, respectively); however, there was a tendency for blinded studies to produce a lower OR. Studies with age-matched controls produced nonsignificant results (random effects OR, 1.04 [95% CI, 0.97-1.12]), whereas studies with a lack of matching showed a significant association (random effects OR, 1.15 [95% CI, 1.09-1.20]) (P = .01). Studies with insertion-specific primer genotyping produced significantly lower ORs (P < .01) than did studies with other genotyping procedures, although both subgroup analyses derived significant associations.

Place holder to copy figure label and caption
Figure 4.

Subgroup and sensitivity analyses for the components of study quality for the allelic contrast. HWE indicates Hardy-Weinberg equilibrium.

Graphic Jump Location

The metaregression showed that the major sources of heterogeneity are racial/ethnic diversity (P < .01) and the quality characteristics of genotyping procedure (P = .01) and age matching (P = .01). Use of an angiographically based definition of CAD and study blindness did not contribute significantly to overall heterogeneity (P = .50 and P = .41, respectively). Although male sex produced a significant association, the sex effect in the metaregression was not significant (P = .86), indicating that the difference between the sexes can be considered marginal (P = .98) and that it might be due to the limited number of studies investigating sex interaction. Other potential sources of heterogeneity could be the age at onset, differential risk exposures, and presence of diabetes mellitus.

The Egger and Begg-Mazumdar tests for the allelic contrast indicated that there is a differential magnitude of effect in large vs small studies (P < .01 and P = .05, respectively).

The strength of the present analysis investigating the relationship between the ACE I/D polymorphic variant and susceptibility to CAD is based on the large amount of published data giving greater information to detect significant differences. In the present study, the consistency of genetic effects across populations from different ethnicities was investigated. The need for cumulative and recursive cumulative meta-analyses has already been highlighted.167,168 The stability in the relative changes in ORs indicates that there is enough evidence to draw safe conclusions about the risk effect of the ACE I/D polymorphic variant in CAD. The ACE I/D polymorphic variant is associated with an increased CAD susceptibility in certain subgroups (white, East Asian, and Turkish subjects, men, and subjects with diabetes mellitus) and the results found a modest genetic effect, with the random effects ORs ranging from 1.11 to 1.25 for the models under investigation.

Our overall results showed a significant heterogeneity. Heterogeneity may result from differences in sample selection (eg, age at onset, sex, or diagnostic criteria) or in genotyping methods (2 different genotyping procedures were used), or it may be due to real differences in populations (eg, racial descent) or interactions with other unknown risk factors.167

The results of the meta-analysis were affected by population origin. White and Turkish subjects showed significance under an additive model as in the main analysis, whereas East Asian subjects showed significance under a recessive model, so any conclusion should be interpreted with caution. Nevertheless, in East Asian subjects, the frequency of the DD genotype is lower than that in white subjects.169 This lower frequency of the DD genotype, with the small numbers of subjects enrolled in most studies in East Asian subjects, implies that any negative conclusion could be due to a low statistical power. The rest of the examined racial/ethnic groups showed no significant effect. Only 3 studies were conducted in black subjects, although this population is disproportionately affected by heart disease. The differences in effects of the ACE I/D polymorphic variant in the examined racial/ethnic groups could reflect true race-specific genetic effects, because functional analyses of variation in the ACE gene have indicated different quantitative trait loci in particular racial/ethnic groups.170172

The differential association in men and women provides an intriguing finding of sex-specific effects for the ACE I/D polymorphic variant that have not been reported in previous meta-analyses.1620 Overall, 11 studies have investigated a potential sex interaction for the ACE I/D polymorphic variant in CAD risk.52,58,64,80,82,96,97,104,113,135,147 Six studies report a positive association restricted only to men52,58,64,97,147; 4 studies did not find any association for both sexes80,82,104,113; and 1 study identified a positive association for men and women.135 Although not consistent, such a sex-specific influence could result from the effect of corticosteroid hormones, which affect the activity of the renin-angiotensin-aldosterone system in a variety of tissues.173 The incorporation of sex-dependent models in future studies is awaited to provide a more powerful analytical framework.174

We performed subgroup analyses for premature cases and low-risk individuals. These subgroups are of specific interest, because genetic factors may have greater contribution in those in whom CAD develops at a younger age and in the absence of strong environmental risk factors.175,176 Although the definition of low-risk subgroups was not similar in the analyzed studies (details available from the authors on request), these subgroups consisted mostly of individuals with a low body mass index and a nondyslipidemic profile. Contrary to what was anticipated, the subgroup analyses produced no significant results, making the robustness of the main analysis debatable. The positive association of the ACE I/D polymorphic variant found in subgroup analysis for diabetic subjects concurred with that of previous reports.177

The subgroup analysis involving only cases with MI had results similar to those of the main pooled analysis. By definition, CAD represents a broad clinical entity and is probably a suboptimal end point for genetic association studies, where the definition of phenotypes is of crucial importance.178 Consequently, more distinct and precise phenotypes such as MI (under the World Health Organization criteria)179 or a more standardized definition of CAD (under strict angiographic or intravascular ultrasonographic criteria)180,181 should be used in future studies.

Our main analysis was based on unadjusted estimates. However, a more precise analysis could be performed if adjusted estimates were available in all studies.35 Another potentially important limitation of our analysis is that our results were not adjusted for the use of ACE inhibitors by the cases and/or the controls because such information was not universally provided by the studies. Because recent data indicate that the response to ACE inhibitors could depend on the ACE genotype,182 this lack of correction might have influenced our results.

Most of the analyzed studies were of a case-control design and had a retrospective character. This means that a significant proportion of cases were recruited some time (and at varying times) after an incident MI. About half of the deaths due to an acute MI occur in the first few hours, typically before admission to a hospital.17 If the risk genotype is associated with a poor prognosis immediately after MI, then this genotype will be underrepresented in cases at the time of enrollment. Prospective studies could overcome such a confounding factor.22 However, such a claim is controversial, in consideration of the evidence linking the D allele to human longevity183 and sudden cardiac death.53

The relevant methodological aspects of the studies and the influence of quality were assessed individually on the basis of a subgroup or a sensitivity analysis. Although composite quality scales may provide an overall assessment when comparing studies, the use of such scales can be problematic, and the interpretation of results is difficult.40 However, there is some controversy in the literature as to whether variations in study quality constitute an important source of heterogeneity.184187 The only predominant measures of quality affecting heterogeneity could be the method of genotyping (the use of insertion-specific primers is considered to be a more accurate method) and the age matching.

Prevalence of CAD increases gradually with age, and CAD is very common in the aging population.188 Future studies should select cases with very-early-onset disease and a strong family history or a strong genetic etiology, and this approach could enhance the statistical power to detect a genetic effect.189 However, in studies investigating premature CAD, the controls had a relatively younger mean age. The absence of CAD in young patients does not exclude the possibility of CAD developing in the future. Therefore, a control group may include subjects who are still at risk of CAD.34

For most meta-analysis applications in genetics and genomics, the sample sizes of individual studies tend to be small. The power of single studies is usually very low. A combination of low power and high biological multiplicity results is expected to result in a very high rate of false discovery.190 Synthesis of data from many studies is expected to improve power and reduce the rate of false discovery in all circumstances, and the gain could be considerable unless there is very large genuine between-study heterogeneity.191 However, power calculations are usually considered inappropriate in meta-analysis, because those data are already assembled.27,192

Although this meta-analysis was based on a large number of subjects, the investigation of genetic associations should be based on large population studies with similar study designs and standardized case and control definitions. Winkelmann et al193 suggested the creation of large databases, which will facilitate the sharing of resources among investigators. This will result in the generation of fewer but more reliable studies, helping to mitigate the problem of the publication of multiple investigations involving small numbers of patients, which often produce confounding results. Individual researchers should also publish or make easily available sufficient information to facilitate future meta-analysis, including relevant genotype, phenotype (such as MI cases or angiographic data), and subgroup data (eg, sex, risk factors, and age at onset). Future studies investigating the role of the ACE I/D polymorphic variant in CAD should be planned with the idea of being incorporated with other similar studies in an update meta-analysis.27,194

Because the ACE I/D polymorphic variant is intronic, it is unlikely to be functional. Despite considerable effort, the precise location of the functional polymorphic variant or variants is still unknown. In white subjects, there are 3 major haplotypes covering 90% of the gene variation that exhibit strong linkage disequilibrium with the I/D polymorphic variant.170 Within populations of African origin, a great variety of polymorphic variants is found, and serum ACE levels are not linked to the I/D variant. A cohort study in Africans demonstrated that a single nucleotide polymorphism in exon 17 and an additional one in the upstream untranslated region are responsible for the variation in ACE serum activity.171 Because a functional variation in the ACE gene has yet to be completely characterized, future studies using the HapMap tagging single nucleotide polymorphism data could provide useful insights regarding the disease-associated gene haplotypes.195

In addition, other probable genetic risk factors interacting with this polymorphic variant should be investigated. The presence of epistatic loci (ie, the effect of one locus is altered or masked by effects at another locus) has been investigated by few studies, to date. Elucidating the genetic contribution of the renin-angiotensin-aldosterone system to CAD would demand investigation of association for many variants of genes that constitute this pathophysiological pathway.196,197 Moreover, many environmental factors have been associated with increased risk of CAD. Despite difficulties in study design and in the assessment of environmental exposures, such factors should be incorporated in future studies to precisely define the role of specific genetic variants and the relative impact of genes and environment on the distribution of the phenotype.198 Therefore, this meta-analysis could be a guide for future case-control studies investigating the genetic basis of CAD.

In conclusion, the present meta-analysis supported an association between the ACE I/D polymorphic variant and CAD. In the main analysis, the ACE I/D polymorphic variant was found to contribute to CAD susceptibility under an additive model, whereas, in subgroup analyses, the pattern of results was heterogeneous. However, 15 years after the first publication5 and despite the undertaking of more than 100 genetic association studies designed to test this hypothesis, the exact role of the variation in the human genome most studied to date199 remains an unresolved issue.

Correspondence: Elias Zintzaras, MSc, PhD, Department of Biomathematics, University of Thessaly School of Medicine, Papakyriazi 22, Larissa 41222, Greece (zintza@med.uth.gr).

Accepted for Publication: October 17, 2007.

Author Contributions:Study concept and design: Zintzaras, Raman, Kitsios, and Lau. Acquisition of data: Zintzaras and Kitsios. Analysis and interpretation of data: Zintzaras and Kitsios. Drafting of the manuscript: Zintzaras and Kitsios. Critical revision of the manuscript for important intellectual content: Zintzaras, Raman, Kitsios, and Lau. Statistical analysis: Zintzaras, Kitsios, and Lau. Administrative, technical, and material support: Zintzaras, Raman, and Kitsios. Study supervision: Zintzaras and Lau.

Financial Disclosure: None reported.

Wang  Q Molecular genetics of coronary artery disease. Curr Opin Cardiol 2005;20 (3) 182- 188
PubMed
Topol  EJ The genomic basis of myocardial infarction. J Am Coll Cardiol 2005;46 (8) 1456- 1465
PubMed
Hackam  DGAnand  SS Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 2003;290 (7) 932- 940
PubMed
Carluccio  MSoccio  MDe Caterina  R Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system. Eur J Clin Invest 2001;31 (6) 476- 488
PubMed
Cambien  FPoirier  OLecerf  L  et al.  Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359 (6396) 641- 644
PubMed
Hoshida  SKato  JNishino  M  et al.  Increased angiotensin-converting enzyme activity in coronary artery specimens from patients with acute coronary syndrome. Circulation 2001;103 (5) 630- 633
PubMed
Haberbosch  WBohle  RMFranke  FE  et al.  The expression of angiotensin-I converting enzyme in human atherosclerotic plaques is not related to the deletion/insertion polymorphism but to the risk of restenosis after coronary interventions. Atherosclerosis 1997;130 (1-2) 203- 213
PubMed
Yusuf  SSleight  PPogue  JBosch  JDavies  RDagenais  GHeart Outcomes Prevention Evaluation Study Investigators, Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342 (3) 145- 153
PubMed
Danchin  NCucherat  MThuillez  CDurand  EKadri  ZSteg  PG Angiotensin-converting enzyme inhibitors in patients with coronary artery disease and absence of heart failure or left ventricular systolic dysfunction: an overview of long-term randomized controlled trials. Arch Intern Med 2006;166 (7) 787- 796
PubMed
Rigat  BHubert  CCorvol  PSoubrier  F PCR detection of the insertion/deletion polymorphism of the human angiotensin-converting enzyme gene. Nucleic Acids Res 1992;20 (6) 1433
PubMed
Rigat  BHubert  CAlhenc-Gelas  FCambien  FCorvol  PSoubrier  F An insertion/deletion polymorphism in the human angiotensin I–converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86 (4) 1343- 1346
PubMed
Tiret  LRigat  BVisvikis  S Evidence from combined segregation and linkage analysis that a variant of ACE gene controls plasma ACE levels. Am J Hum Genet 1992;51 (1) 197- 205
PubMed
Costerousse  OAllegrini  JLopez  MAlhenc-Gelas  F Angiotensin I–converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 1993;290 (pt 1) 33- 40
PubMed
Danser  AHSchalekamp  MADHBax  WA  et al.  Angiotensin-converting enzyme in the human heart: effect of the deletion:insertion polymorphism. Circulation 1995;92 (6) 1387- 1388
PubMed
Biller  HZissel  GRuprecht  BNauck  MBusse Grawitz  AMuller-Quernheim  J Genotype-corrected reference values for serum angiotensin-converting enzyme. Eur Respir J 2006;28 (6) 1085- 1090
PubMed
Samani  NJThompson  JRO’Toole  LChanner  KWoods  KL A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996;94 (4) 708- 712
PubMed
Keavney  B McKenzie  CParish  S  et al. International Studies of Infarct Survival (ISIS) Collaborators, Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. Lancet 2000;355 (9202) 434- 442
PubMed
Staessen  JAWang  JGGinocchio  G  et al.  The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997;15 (12, pt 2) 1579- 1592
PubMed
Agerholm-Larsen  BNordestgaard  BGTybjaerg-Hansen  A ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000;20 (2) 484- 492
PubMed
Morgan  TMCoffey  CSKrumholz  HM Overestimation of genetic risks owing to small sample sizes in cardiovascular studies. Clin Genet 2003;64 (1) 7- 17
PubMed
Bonnici  FKeavney  BCollins  RDanesh  J Angiotensin converting enzyme insertion or deletion polymorphism and coronary restenosis: meta-analysis of 16 studies. BMJ 2002;325 (7363) 517- 519
PubMed
Kitsios  GZintzaras  E Genetic variation associated with ischemic heart failure: a HuGE review and meta-analysis. Am J Epidemiol 2007;166 (6) 619- 633
PubMed
de Bakker  PIYelensky  RPeer  IGabriel  SBDaly  MJAltshuler  D Efficiency and power in genetic association studies. Nat Genet 2005;37 (11) 1217- 1223
PubMed
Clayton  DGWalker  NMSmyth  DJ  et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 2005;37 (11) 1243- 1246
PubMed
Zou  GZhao  H The impacts of errors in individual genotyping and DNA pooling on association studies. Genet Epidemiol 2004;26 (1) 1- 10
PubMed
Colhoun  HMMcKeigue  PMDavey  SG Problems of reporting genetic associations with complex outcomes. Lancet 2003;361 (9360) 865- 872
PubMed
Zintzaras  ELau  J Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches.  J Clin Epidemiol In press.10.1016/j.jclinepi.2007.12.011
Lau  JAntman  EMJimenez-Silva  JKupelnick  BMosteller  FChalmers  TC Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 1992;327 (4) 248- 254
PubMed
Zintzaras  EKitsios  G Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches. J Hum Genet 2006;51 (11) 1015- 1021
PubMed
Zintzaras  EIoannidis  JP Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol 2005;28 (2) 123- 137
PubMed
Whitehead  A Meta-analysis of Controlled Clinical Trials.  New York, NY John Wiley & Sons Inc2002;
Ioannidis  JPTrikalinos  TAZintzaras  E Extreme between-study homogeneity in meta-analyses could offer useful insights. J Clin Epidemiol 2006;59 (10) 1023- 1032
PubMed
Huedo-Medina  TB Sanchez-Meca  JMarin-Martinez  FBotella  J Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 2006;11 (2) 193- 206
PubMed
Zintzaras  EKitsios  GStefanidis  I Endothelial NO synthase gene polymorphisms and hypertension: a meta-analysis. Hypertension 2006;48 (4) 700- 710
PubMed
Ioannidis  JLau  J Evolution of treatment effects over time: empirical insight from recursive cumulative metaanalyses. Proc Natl Acad Sci U S A 2001;98 (3) 831- 836
PubMed
Sterne  JAEgger  M Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001;54 (10) 1046- 1055
PubMed
Begg  CBMazumdar  M Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50 (4) 1088- 1101
PubMed
Zintzaras  EHadjigeorgiou  GM Association of paraoxonase 1 gene polymorphisms with risk of Parkinson's disease: a meta-analysis. J Hum Genet 2004;49 (9) 474- 481
PubMed
Ioannidis  JPNtzani  EETrikalinos  TA “Racial” differences in genetic effects for complex diseases. Nat Genet 2004;36 (12) 1312- 1318
PubMed
Egger  MDavey Smith  GAltma  DG Systematic Reviews in Health Care: Meta-analysis in Context. 2nd ed. London, England BMJ Books2001;
Shanmugam  VSell  KWSaha  BK Mistyping ACE heterozygotes. PCR Methods Appl 1993;3 (2) 120- 121
PubMed
Attia  JThakkinstian  AD’Este  C Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 2003;56 (4) 297- 303
PubMed
Zintzaras  EKoufakis  TZiakas  PDRodopoulou  PGiannouli  SVoulgarelis  M A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 2006;21 (7) 501- 510
PubMed
Zintzaras  E Methylenetetrahydrofolate reductase gene and susceptibility to breast cancer: a meta-analysis. Clin Genet 2006;69 (4) 327- 336
PubMed
Zintzaras  E C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet 2006;16 (3) 105- 115
PubMed
Zintzaras  E Brain-derived neurotrophic factor gene polymorphisms and schizophrenia: a meta-analysis. Psychiatr Genet 2007;17 (2) 69- 75
PubMed
Zintzaras  E Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet 2006;51 (7) 618- 624
PubMed
Zintzaras  EHadjigeorgiou  GM The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson's disease: a meta-analysis. J Hum Genet 2005;50 (11) 560- 566
PubMed
Zintzaras  EChatzoulis  DZKarabatsas  CHStefanidis  I The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type 2 diabetes: a meta-analysis. J Hum Genet 2005;50 (6) 267- 275
PubMed
Zintzaras  EStefanidis  I Association between the GLUT1 gene polymorphism and the risk of diabetic nephropathy: a meta-analysis. J Hum Genet 2005;50 (2) 84- 91
PubMed
Weir  BS Genetic Data Analysis II: Methods for Discrete Population Genetic Data.  Sunderland, MA Sinauer Associates1996;
Bøhn  MBerge  KEBakken  AErikssen  JBerg  K Insertion/deletion (I/D) polymorphism at the locus for angiotensin I-converting enzyme and myocardial infarction. Clin Genet 1993;44 (6) 292- 297
PubMed
Evans  AEPoirier  OKee  F  et al.  Polymorphisms of the angiotensin-converting-enzyme gene in subjects who die from coronary heart disease. Q J Med 1994;87 (4) 211- 214
PubMed
Leatham  EBarley  JRedwood  S  et al.  Angiotensin-1 converting enzyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina. J Hum Hypertens 1994;8 (8) 635- 638
PubMed
Miettinen  HEKorpela  KHamalainen  LKontula  K Polymorphisms of the apolipoprotein and angiotensin converting enzyme genes in young North Karelian patients with coronary heart disease. Hum Genet 1994;94 (2) 189- 192
PubMed
Ruiz  JBlanche  HCohen  N  et al.  Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non–insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1994;91 (9) 3662- 3665
PubMed
Arbustini  EGrasso  MFasani  R  et al.  Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br Heart J 1995;74 (6) 584- 591
PubMed
Beohar  NDamaraju  SPrather  A  et al.  Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease. J Investig Med 1995;43 (3) 275- 280
PubMed
Friedl  WKrempler  FPaulweber  BPichler  MSandhofer  F A deletion polymorphism in the angiotensin converting enzyme gene is not associated with coronary heart disease in an Austrian population. Atherosclerosis 1995;112 (2) 137- 143
PubMed
Kamitani  ARakugi  HHigaki  J  et al.  Enhanced predictability of myocardial infarction in Japanese by combined genotype analysis. Hypertension 1995;25 (5) 950- 953
PubMed
Katsuya  TKoike  GYee  TW  et al.  Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 1995;345 (8965) 1600- 1603
PubMed
Keavney  BDDudley  CRStratton  IM  et al.  UK prospective diabetes study (UKPDS) 14: association of angiotensin-converting enzyme insertion/deletion polymorphism with myocardial infarction in NIDDM. Diabetologia 1995;38 (8) 948- 952
PubMed
Lindpaintner  KPfeffer  MAKreutz  R  et al.  A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332 (11) 706- 711
PubMed
Ludwig  ECorneli  PSAnderson  JLMarshall  HWLalouel  JMWard  RH Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 1995;91 (8) 2120- 2124
PubMed
Mattu  RKNeedham  EWGalton  DJFrangos  EClark  AJCaulfield  MA DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation 1995;91 (2) 270- 274
PubMed
Panahloo  AAndres  CMohamed-Ali  V  et al.  The insertion allele of the ACE gene I/D polymorphism: a candidate gene for insulin resistance? Circulation 1995;92 (12) 3390- 3393
PubMed
Payne  MNBartlett  WAMcDonald  FMurray  RGBeattie  JMJones  AF Lipoprotein(a), ACE, and family history of CAD. Circulation 1995;92 (12) 3583
PubMed
Takahashi  KNakamura  HKubota  ITakahashi  NTomoike  H Association of ACE gene polymorphisms with coronary artery disease in a northern area of Japan. Jpn Heart J 1995;36 (5) 557- 564
PubMed
Tarnow  LCambien  FRossing  P  et al.  Insertion/deletion polymorphism in the angiotensin-I–converting enzyme gene is associated with coronary heart disease in IDDM patients with diabetic nephropathy. Diabetologia 1995;38 (7) 798- 803
PubMed
Ukkola  OSavolainen  MJSalmela  PIvon Dickhoff  KKiema  TKesaniemi  YA Insertion/deletion polymorphism in the angiotensin-converting enzyme gene associated with macroangiopathy and blood pressure in patients with non–insulin-dependent diabetes mellitus. J Mol Med 1995;73 (6) 307- 311
PubMed
Zhang  YJeffrey  SBarley  JHann  CCarter  NKaski  JC Angiotensin-converting enzyme insertion/deletion polymorphism in angina pectoris with normal coronary arteriograms. Am J Cardiol 1996;77 (10) 877- 879
PubMed
Nakata  YKatsuya  TRakugi  H  et al.  Polymorphism of the apolipoprotein E and angiotensin-converting enzyme genes in Japanese subjects with silent myocardial ischemia. Hypertension 1996;27 (6) 1205- 1209
PubMed
Nakauchi  YSuehiro  TYamamoto  M  et al.  Significance of angiotensin I–converting enzyme and angiotensin II type 1 receptor gene polymorphisms as risk factors for coronary heart disease. Atherosclerosis 1996;125 (2) 161- 169
PubMed
Ramasawmy  RManraj  MKotea  N  et al.  Lack of association of angiotensin I–converting enzyme gene polymorphism and premature myocardial infarction in Mauritian Indians. Clin Genet 1996;50 (6) 551- 554
PubMed
Saha  NTalmud  PJTay  JSHumphries  SEBasair  J Lack of association of angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism with CAD in two Asian populations. Clin Genet 1996;50 (3) 121- 125
PubMed
Samani  NJO’Toole  LMartin  D  et al.  Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of and prognosis after myocardial infarction. J Am Coll Cardiol 1996;28 (2) 338- 344
PubMed
Wang  XL McCredie  RMWilcken  DE Genotype distribution of angiotensin-converting enzyme polymorphism in Australian healthy and coronary populations and relevance to myocardial infarction and coronary artery disease. Arterioscler Thromb Vasc Biol 1996;16 (1) 115- 119
PubMed
Wenzel  KBlackburn  AErnst  M  et al.  Relationship of polymorphisms in the renin-angiotensin system and in E-selectin of patients with early severe coronary heart disease. J Mol Med 1997;75 (1) 57- 61
PubMed
Winkelmann  BRNauck  MKlein  B  et al.  Deletion polymorphism of the angiotensin I–converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med 1996;125 (1) 19- 25
PubMed
Agerholm-Larsen  B Nordestgaard  BGSteffensen  RSorensen  TIJensen  GTybjaerg-Hansen  A ACE gene polymorphism: ischemic heart disease and longevity in 10,150 individuals: a case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation 1997;95 (10) 2358- 2367
PubMed
Corbo  RMVilardo  TMantuano  ERuggeri  MGemma  ATScacchi  R Apolipoproteins B and E, and angiotensin I–converting enzyme (ACE) genetic polymorphisms in Italian women with coronary artery disease (CAD) and their relationships with plasma lipid and apolipoprotein levels. Clin Genet 1997;52 (2) 77- 82
PubMed
Fujimura  TYokota  MKato  S  et al.  Lack of association of angiotensin converting enzyme gene polymorphism or serum enzyme activity with coronary artery disease in Japanese subjects. Am J Hypertens 1997;10 (12, pt 1) 1384- 1390
PubMed
Hong  SHKang  BYPark  WHKim  JQLee  CC Genetic variation of the angiotensin-converting enzyme gene: increased frequency of the insertion allele in Koreans. Clin Genet 1997;51 (1) 35- 38
PubMed
Iwai  NTamaki  SOhmichi  NKinoshita  M The II genotype of angiotensin-converting enzyme gene delays the onset of acute coronary syndromes. Arterioscler Thromb Vasc Biol 1997;17 (9) 1730- 1733
PubMed
Jeffers  BWEstacio  RORaynolds  MVSchrier  RW Angiotensin-converting enzyme gene polymorphism in non–insulin dependent diabetes mellitus and its relationship with diabetic nephropathy. Kidney Int 1997;52 (2) 473- 477
PubMed
Krizanová  OObdrzalkova  DPolakova  HJelok  IHudecova  S Molecular variants of the renin-angiotensin system components in the Slovak population. Physiol Res 1997;46 (5) 357- 361
PubMed
Kuroki  SIkeda  UMaeda  YSekiguchi  HShimada  K Lack of association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and vasospastic angina. Clin Cardiol 1997;20 (10) 873- 876
PubMed
Sigusch  HHVogt  SGruber  U  et al.  Angiotensin-I–converting enzyme DD genotype is a risk factor of coronary artery disease. Scand J Clin Lab Invest 1997;57 (2) 127- 132
PubMed
Tokgözoğlu  SLAlikaşifoğlu  MAtalar  E  et al.  Angiotensin converting enzyme gene polymorphism and the risk and extent of ischemic heart disease among Turkish patients. Coron Artery Dis 1997;8 (3-4) 137- 141
PubMed
Akar  NAras  OOmurlu  KCin  S Deletion polymorphism at the angiotensin-converting enzyme gene in Turkish patients with coronary artery disease. Scand J Clin Lab Invest 1998;58 (6) 491- 495
PubMed
Anderson  JLCarlquist  JFKing  GJ  et al.  Angiotensin-converting enzyme genotypes and risk for myocardial infarction in women. J Am Coll Cardiol 1998;31 (4) 790- 796
PubMed
Arca  M Pannitteri  GCampagna  F  et al.  Angiotensin-converting enzyme gene polymorphism is not associated with coronary atherosclerosis and myocardial infarction in a sample of Italian patients. Eur J Clin Invest 1998;28 (6) 485- 490
PubMed
Biggart  SChin  DFauchon  M  et al.  Association of genetic polymorphisms in the ACE, ApoE, and TGF beta genes with early onset ischemic heart disease. Clin Cardiol 1998;21 (11) 831- 836
PubMed
Gardemann  AFink  MStricker  J  et al.  ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998;139 (1) 153- 159
PubMed
Huang  XHRantalaiho  VWirta  O  et al.  Angiotensin-converting enzyme gene polymorphism is associated with coronary heart disease in non–insulin-dependent diabetic patients evaluated for 9 years. Metabolism 1998;47 (10) 1258- 1262
PubMed
Nakai  KFusazaki  TZhang  T  et al.  Polymorphism of the apolipoprotein E and angiotensin I converting enzyme genes in Japanese patients with myocardial infarction. Coron Artery Dis 1998;9 (6) 329- 334
PubMed
O’Malley  J PMaslen  CLIllingworth  DR Angiotensin-converting enzyme DD genotype and cardiovascular disease in heterozygous familial hypercholesterolemia. Circulation 1998;97 (18) 1780- 1783
PubMed
Wesolowska  EMarcil  MLussier-Cacan  SDavignon  JLatour  YGenest  J  Jr Angiotensin converting enzyme insertion/deletion polymorphism in French Canadian subjects with premature coronary artery disease. Pathol Biol (Paris) 1998;46 (5) 295- 300
PubMed
Fernández-Arcás  NDieguez-Lucena  JLMuñoz-Moran  E  et al.  The genotype interactions of methylenetetrahydrofolate reductase and renin-angiotensin system genes are associated with myocardial infarction. Atherosclerosis 1999;145 (2) 293- 300
PubMed
Ferrières  JElias  ARuidavets  JB  et al.  Carotid intima-media thickness and coronary heart disease risk factors in a low-risk population. J Hypertens 1999;17 (6) 743- 748
PubMed
Isbir  TYilmaz  HAgachan  BAydin  MIsbir  CS Association between angiotensin-converting enzyme gene polymorphism and coronary artery disease. IUBMB Life 1999;48 (2) 205- 207
PubMed
Lin  JJYueh  KCHarn  HJChang  DCChang  CYYeh  YH Lack of association between deletion polymorphism of the ACE gene and ischemic vascular diseases in a Chinese population in Taiwan. Zhonghua Yi Xue Za Zhi (Taipei) 1999;62 (11) 756- 763
PubMed
Nakagami  HIkeda  UMaeda  Y  et al.  Coronary artery disease and endothelial nitric oxide synthase and angiotensin-converting enzyme gene polymorphisms. J Thromb Thrombolysis 1999;8 (3) 191- 195
PubMed
Pfohl  MKoch  MPrescod  SHaase  KKHaring  HUKarsch  KR Angiotensin I–converting enzyme gene polymorphism, coronary artery disease and myocardial infarction: an angiographically controlled study. Eur Heart J 1999;20 (18) 1318- 1325
PubMed
Rice  GIFoy  CAGrant  PJ Angiotensin converting enzyme and angiotensin II type 1–receptor gene polymorphisms and risk of ischaemic heart disease. Cardiovasc Res 1999;41 (3) 746- 753
PubMed
Batalla  AAlvarez  RReguero  JR  et al.  Synergistic effect between apolipoprotein E and angiotensinogen gene polymorphisms in the risk for early myocardial infarction. Clin Chem 2000;46 (12) 1910- 1915
PubMed
Canavy  IHenry  MMorange  PE  et al.  Genetic polymorphisms and coronary artery disease in the south of France. Thromb Haemost 2000;83 (2) 212- 216
PubMed
Dzimiri  NBasco  CMoorji  AMeyer  BF Angiotensin-converting enzyme polymorphism and the risk of coronary heart disease in the Saudi male population. Arch Pathol Lab Med 2000;124 (4) 531- 534
PubMed
Fatini  CAbbate  RPepe  G  et al.  Searching for a better assessment of the individual coronary risk profile: the role of angiotensin-converting enzyme, angiotensin II type 1 receptor and angiotensinogen gene polymorphisms. Eur Heart J 2000;21 (8) 633- 638
PubMed
Fomicheva  EVGukova  SPLarionova-Vasina  VIKovalev  YRSchwartz  EI Gene-gene interaction in the RAS system in the predisposition to myocardial infarction in elder population of St. Petersburg (Russia). Mol Genet Metab 2000;69 (1) 76- 80
PubMed
Gürlek  AGülec  SKarabulut  H  et al.  Relation between the insertion/deletion polymorphism of the angiotensin I converting enzyme gene and restenosis after coronary stenting. J Cardiovasc Risk 2000;7 (6) 403- 407
PubMed
Hubacek  JAPitha  JPodrapska  I  et al.  Insertion/deletion polymorphism in the angiotensin-converting enzyme gene in myocardial infarction survivors. Med Sci Monit 2000;6 (3) 503- 506
PubMed
Kee  FMorrison  CPoirier  O  et al.  Angiotensin II type-I receptor and ACE polymorphisms and risk of myocardial infarction in men and women. Eur J Clin Invest 2000;30 (12) 1076- 1082
PubMed
Mansur  APAnnicchino-Bizzacchi  JFavarato  DAvakian  SDCesar  LARamires  JA Angiotensin-converting enzyme and apolipoproteins genes polymorphism in coronary artery disease. Clin Cardiol 2000;23 (5) 335- 340
PubMed
Peterlin  BPetrovic  DZorc  MKeber  I Deletion/insertion polymorphism in the angiotension-converting enzyme gene as a risk factor in the Slovenian patients with coronary heart disease. Pflugers Arch 2000;439 (3) ((suppl)) R40- R41
PubMed
van Bockxmeer  FMMamotte  CDBurke  VTaylor  RR Angiotensin-converting enzyme gene polymorphism and premature coronary heart disease. Clin Sci (Lond) 2000;99 (3) 247- 251
PubMed
Wierzbicki  ASLambert-Hammill  MLumb  PJCrook  MA Renin-angiotensin system polymorphisms and coronary events in familial hypercholesterolemia. Hypertension 2000;36 (5) 808- 812
PubMed
Alvarez  RGonzalez  PBatalla  A  et al.  Association between the NOS3 (−786 T/C) and the ACE (I/D) DNA genotypes and early coronary artery disease. Nitric Oxide 2001;5 (4) 343- 348
PubMed
Fernández-Arcás  NDieguez-Lucena  JLMuñoz-Morán  E  et al.  Both alleles of the M235T polymorphism of the angiotensinogen gene can be a risk factor for myocardial infarction. Clin Genet 2001;60 (1) 52- 57
PubMed
Hopkins  PNStephenson  SWu  LLRiley  WAXin  YHunt  SC Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2001;87 (5) 547- 553
PubMed
Kawakami  KOkumura  KMatsui  H  et al.  The apolipoprotein E genotype influences the risk for vasospastic angina. Can J Cardiol 2001;17 (6) 660- 666
PubMed
Rodríguez-Pérez  JCRodríguez-Esparragón  FHernández-Perera  O  et al.  Association of angiotensinogen M235T and A(−6)G gene polymorphisms with coronary heart disease with independence of essential hypertension: the PROCAGENE Study: Prospective Cardiac Gene. J Am Coll Cardiol 2001;37 (6) 1536- 1542
PubMed
Spiridonova  MGStepanov  VAPuzyrev  VPKarpov  RS The estimation of gametic disequilibrium between DNA markers in candidate genes for coronary artery disease (CAD) and the associations of gene complexes with risk factors for CAD. Int J Circumpolar Health 2001;60 (2) 222- 227
PubMed
Steeds  RPWardle  ASmith  PDMartin  DChanner  KSSamani  NJ Analysis of the postulated interaction between the angiotensin II sub-type 1 receptor gene A1166C polymorphism and the insertion/deletion polymorphism of the angiotensin converting enzyme gene on risk of myocardial infarction. Atherosclerosis 2001;154 (1) 123- 128
PubMed
Takagi  SGoto  YNonogi  HBaba  SIwai  N Genetic polymorphisms of angiotensin converting enzyme (I/D) and endothelial nitric oxide synthase (T(-788)C) genes in Japanese patients with myocardial infarction. Thromb Haemost 2001;86 (5) 1339- 1340
PubMed
Viitanen  LPihlajamäki  JHalonen  P  et al.  Association of angiotensin converting enzyme and plasminogen activator inhibitor-1 promoter gene polymorphisms with features of the insulin resistance syndrome in patients with premature coronary heart disease. Atherosclerosis 2001;157 (1) 57- 64
PubMed
Araz  MAynacioglu  SOkan  VAkdemir  IAktaran  S Angiotensin-converting enzyme gene polymorphism and coronary heart disease in Turkish type 2 diabetic patients. Acta Cardiol 2002;57 (4) 265- 269
PubMed
Ermis  CTsai  MYHanson  NQAkar  NAras  O Angiotensin I converting enzyme, angiotensin II type 1 receptor and angiotensinogen polymorphisms and early myocardial infarction in Turkish population. Thromb Haemost 2002;88 (4) 693- 694
PubMed
Hernández Ortega  EMedina Fernández-Aceituno  ARodríguez Esparragón  FJ  et al.  The involvement of the renin-angiotensin system gene polymorphisms in coronary heart disease. Rev Esp Cardiol 2002;55 (2) 92- 99
PubMed
Hooper  WC Dowling  NFWenger  NKDilley  AEllingsen  DEvatt  BL Relationship of venous thromboembolism and myocardial infarction with the renin-angiotensin system in African-Americans. Am J Hematol 2002;70 (1) 1- 8
PubMed
Olivieri  OGrazioli  SPizzolo  F  et al.  Different impact of deletion polymorphism of gene on the risk of renal and coronary artery disease. J Hypertens 2002;20 (1) 37- 43
PubMed
Sobstyl  JDzida  GPuzniak  AMosiewicz  JHanzlik  J Angiotensin-converting enzyme gene insertion/deletion polymorphism in Polish patients with myocardial infarction. Ann Univ Mariae Curie Sklodowska Med 2002;57 (2) 21- 28
PubMed
Covolo  LGelatti  UMetra  M  et al.  Angiotensin-converting-enzyme gene polymorphism and heart failure: a case-control study. Biomarkers 2003;8 (5) 429- 436
PubMed
Martin Fernandez  MRodriguez Reguero  JJGonzález  P Angiotensin-converting enzyme polymorphism (I/D) and coronary heart disease in young adults. J Am Coll Cardiol 2003;42 (10) 1864
PubMed
Holmer  SRBickeböller  HHengstenberg  C  et al.  Angiotensin converting enzyme gene polymorphism and myocardial infarction: a large association and linkage study. Int J Biochem Cell Biol 2003;35 (6) 955- 962
PubMed
Klemm  TMittrach-Schorin  SNeumann  S  et al.  No association between the angiotensin-converting-enzyme gene insertion/deletion polymorphism and the occurrence of macroangiopathy in patients with diabetes mellitus type 2. Horm Metab Res 2003;35 (1) 43- 47
PubMed
Marques-Vidal  PBongard  VRuidavets  JBFauvel  JPret  BFerrières  J Effect of apolipoprotein E alleles and angiotensin-converting enzyme insertion/deletion polymorphisms on lipid and lipoprotein markers in middle-aged men and in patients with stable angina pectoris or healed myocardial infarction. Am J Cardiol 2003;92 (9) 1102- 1105
PubMed
Nair  KGShalia  KKAshavaid  TFDalal  JJ Coronary heart disease, hypertension, and angiotensinogen gene variants in Indian population. J Clin Lab Anal 2003;17 (5) 141- 146
PubMed
Okura  YHayashi  KShingu  T  et al.  Angiotensin-converting enzyme insertion/deletion genotype is associated with the activities of plasma coagulation factor VII and X independent of triglyceride metabolism. Coron Artery Dis 2003;14 (4) 285- 291
PubMed
Zak  INiemiec  PSarecka  B  et al.  Carrier-state of D allele in ACE gene insertion/deletion polymorphism is associated with coronary artery disease, in contrast to the C677→T transition in the MTHFR gene. Acta Biochim Pol 2003;50 (2) 527- 534
PubMed
Bautista  LEArdila  MEGamarra  GVargas  CIArenas  IA Angiotensin-converting enzyme gene polymorphism and risk of myocardial infarction in Colombia. Med Sci Monit 2004;10 (8) CR473- CR479
PubMed
Ishimitsu  TTsukada  KOhta  S  et al.  Increased cardiovascular risk in long-term hemodialysis patients carrying deletion allele of ACE gene polymorphism. Am J Kidney Dis 2004;44 (3) 466- 475
PubMed
Karaali  ZEAgachan  BYilmaz  HIsbir  T Angiotensin-converting enzyme I/D gene polymorphisms and effects of left ventricular hypertrophy in Turkish myocardial infarction patients. Acta Cardiol 2004;59 (5) 493- 497
PubMed
Mata-Balaguer  Tde la Herran  RRuiz-Rejon  CRuiz-Rejon  MGarrido-Ramos  MARuiz-Rejon  F Angiotensin-converting enzyme and p22(phox) polymorphisms and the risk of coronary heart disease in a low-risk Spanish population. Int J Cardiol 2004;95 (2-3) 145- 151
PubMed
Mendonça  IFreitas  IASousa  CA  et al.  Angiotensin converting enzyme gene polymorphisms and coronary risk in a Portuguese population. Rev Port Cardiol 2004;23 (12) 1593- 1601
PubMed
Nacak  MDavutoğlu  VSoydinç  S  et al.  Association between angiotensin converting enzyme gene polymorphism and coronary artery disease in individuals of the South-Eastern Anatolian population. Anadolu Kardiyol Derg 2004;4 (1) 45- 51
PubMed
Petrovic  DBregar  DGuzic-Salobir  B  et al.  Sex difference in the effect of ACE-DD genotype on the risk of premature myocardial infarction. Angiology 2004;55 (2) 155- 158
PubMed
Ranjith  NPegoraro  RJRom  LLanning  PANaidoo  DP Renin-angiotensin system and associated gene polymorphisms in myocardial infarction in young South African Indians. Cardiovasc J S Afr 2004;15 (1) 22- 26
PubMed
Acarturk  EAttila  GBozkurt  AAkpinar  OMatyar  SSeydaoglu  G Insertion/deletion polymorphism of the angiotensin converting enzyme gene in coronary artery disease in southern Turkey. J Biochem Mol Biol 2005;38 (4) 486- 490
PubMed
Araújo  MAGoulart  LRCordeiro  ER  et al.  Genotypic interactions of renin-angiotensin system genes in myocardial infarction. Int J Cardiol 2005;103 (1) 27- 32
PubMed
Arnett  DKDavis  BRFord  CE  et al.  Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) Study. Circulation 2005;111 (25) 3374- 3383
PubMed
Berdeli  ASekuri  CSirri Cam  F  et al.  Association between the eNOS (Glu298Asp) and the RAS genes polymorphisms and premature coronary artery disease in a Turkish population. Clin Chim Acta 2005;351 (1-2) 87- 94
PubMed
Falchi  AGiovannoni  LPiras  IS  et al.  Prevalence of genetic risk factors for coronary artery disease in Corsica island (France). Exp Mol Pathol 2005;79 (3) 210- 213
PubMed
Guneri  SBaris  NAytekin  DAkdeniz  BPekel  NBozdemir  V The relationship between angiotensin converting enzyme gene polymorphism, coronary artery disease, and stent restenosis: the role of angiotensin converting enzyme inhibitors in stent restenosis in patients with diabetes mellitus. Int Heart J 2005;46 (5) 889- 897
PubMed
Heltianu  CCostache  GGafencu  A  et al.  Relationship of eNOS gene variants to diseases that have in common an endothelial cell dysfunction. J Cell Mol Med 2005;9 (1) 135- 142
PubMed
Méthot  JHamelin  BABogaty  PArsenault  MPlante  SPoirier  P ACE-DD genotype is associated with the occurrence of acute coronary syndrome in postmenopausal women. Int J Cardiol 2005;105 (3) 308- 314
PubMed
Riera-Fortuny  CReal  JTChaves  FJ  et al.  The relation between obesity, abdominal fat deposit and the angiotensin-converting enzyme gene I/D polymorphism and its association with coronary heart disease. Int J Obes (Lond) 2005;29 (1) 78- 84
PubMed
Sayed-Tabatabaei  FASchut  AFVásquez  AA  et al.  Angiotensin converting enzyme gene polymorphism and cardiovascular morbidity and mortality: the Rotterdam Study. J Med Genet 2005;42 (1) 26- 30
PubMed
Scheer  WDBoudreau  DAHixson  JE  et al.  ACE insert/delete polymorphism and atherosclerosis. Atherosclerosis 2005;178 (2) 241- 247
PubMed
Seckin  DIlhan  NIlhan  NOzbay  Y The relationship between ACE insertion/deletion polymorphism and coronary artery disease with or without myocardial infarction. Clin Biochem 2006;39 (1) 50- 54
PubMed
Costacou  TChang  YFerrell  REOrchard  TJ Identifying genetic susceptibilities to diabetes-related complications among individuals at low risk of complications: an application of tree-structured survival analysis. Am J Epidemiol 2006;164 (9) 862- 872
PubMed
Muthumala  ACooper  JHumphries  SEHIFMECH Study Group, European differences in the association between ACE I/D polymorphism and incidence of MI may be explained by gene-lipid interaction. Atherosclerosis 2006;189 (2) 474- 477
PubMed
Tütün  UAksöyek  AUlus  AT  et al.  Gene polymorphisms in patients below 35 years of age who underwent coronary artery bypass surgery. Coron Artery Dis 2006;17 (1) 35- 39
PubMed
Vargas-Alarcón  GZamora  JSánchez-García  SRodríguez-Pérez  JMCardoso  GPosadas-Romero  C Angiotensin-I–converting enzyme (ACE) insertion/deletion polymorphism in Mexican patients with coronary artery disease: association with the disease but not with lipid levels. Exp Mol Pathol 2006;81 (2) 131- 135
PubMed
Tsai  CTHwang  JJRitchie  MD  et al.  Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene-gene interaction. Atherosclerosis 2007;195 (1) 172- 180
PubMed
Xu  JTurner  ALittle  JBleecker  ERMeyers  DA Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet 2002;111 (6) 573- 574
PubMed
Lehmann  DJCortina-Borja  MWarden  DR  et al.  Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am J Epidemiol 2005;162 (4) 305- 317
PubMed
Sayed-Tabatabaei  FAOostra  BAIsaacs  Avan Duijn  CMWitteman  JC ACE polymorphisms. Circ Res 2006;98 (9) 1123- 1133
PubMed
Lee  EJD Population genetics of the angiotensin-converting enzyme in Chinese. Br J Clin Pharmacol 1994;37 (2) 212- 214
PubMed
Keavney  BMcKenzie  CAConnell  JM  et al.  Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 1998;7 (11) 1745- 1751
PubMed
Zhu  XBouzekri  NSoutham  L  et al.  Linkage and association analysis of angiotensin I–converting enzyme (ACE)–gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet 2001;68 (5) 1139- 1148
PubMed
McKenzie  CAAbecasis  GRKeavney  B  et al.  Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin I–converting enzyme (ACE). Hum Mol Genet 2001;10 (10) 1077- 1084
PubMed
Pratt  JHAmbrosius  WTTewksbury  DA  et al.  Serum angiotensinogen concentration in relation to gonadal hormones, body size, and genotype in growing young people. Hypertension 1998;32 (5) 875- 879
PubMed
Weiss  LAPan  LAbney  MOber  C The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006;38 (2) 218- 222
PubMed
Chaer  RABilleh  RMassad  MG Genetics and gene manipulation therapy of premature coronary artery disease. Cardiology 2004;101 (1-3) 122- 130
PubMed
Talmud  PJ How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004;63 (1) 5- 10
PubMed
Kennon  BPetrie  JRSmall  MConnel  JMC Angiotensin-converting enzyme gene and diabetes mellitus. Diabet Med 1999;16 (6) 448- 458
PubMed
Feldman  RD Adrenergic receptor polymorphisms and cardiac function (and dysfunction): a failure to communicate [editorial]? Circulation 2001;103 (8) 1042- 1043
PubMed
Tunstall-Pedoe  HKuulasmaa  KAmouyel  PArveiler  DRajakangas  AMPajak  A Myocardial infarction and coronary deaths in the World Health Organization MONICA Project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents: WHO MONICA Project. Circulation 1994;90 (1) 583- 612
PubMed
Felker  GMShaw  LKO’Connor  CM A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol 2002;39 (2) 210- 218
PubMed
Nissen  SE Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis. Am J Cardiol 2002;89 (4A) 24B- 31B
PubMed
Scharplatz  MPuhan  MASteurer  JPerna  ABachmann  LM Does the angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism modify the response to ACE inhibitor therapy? a systematic review. Curr Control Trials Cardiovasc Med 2005;616
PubMed
Schächter  FFaure-Delanef  LGuénot  F  et al.  Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994;6 (1) 29- 32
PubMed
Egger  MJuni  PBartlett  CHolenstein  FSterne  J How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? empirical study. Health Technol Assess 2003;7 (1) 1- 76
PubMed
Thompson  SG Why sources of heterogeneity in meta-analysis should be investigated. BMJ 1994;309 (6965) 1351- 1355
PubMed
Zintzaras  EKaditis  AG Sleep-disordered breathing and blood pressure in children: a meta-analysis. Arch Pediatr Adolesc Med 2007;161 (2) 172- 178
PubMed
Balk  EMBonis  PAMoskowitz  H  et al.  Correlation of quality measures with estimates of treatment effect in meta-analyses of randomized controlled trials. JAMA 2002;287 (22) 2973- 2982
PubMed
Bertomeu  AGarcia-Vidal  OFarre  X  et al.  Preclinical coronary atherosclerosis in a population with low incidence of myocardial infarction: cross sectional autopsy study. BMJ 2003;327 (7415) 591- 592
PubMed
McCarthy  JJParker  ASalem  R  et al.  Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J Med Genet 2004;41 (5) 334- 341
PubMed
Zintzaras  EIoannidis  JPA Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem 2008;32 (1) 38- 46
PubMed
Hedges  LVPigott  TD The power of statistical tests in meta-analysis. Psychol Methods 2001;6 (3) 203- 217
PubMed
Chalmers  TCLau  J Meta-analytic stimulus for changes in clinical trials. Stat Methods Med Res 1993;2 (2) 161- 172
PubMed
Winkelmann  BRHager  JKraus  WE  et al.  Genetics of coronary heart disease: current knowledge and research principles. Am Heart J 2000;140 (4) S11- S26
PubMed
Zintzaras  ELau  J. Trends in meta-analysis of genetic association studies. J Hum Genet 2008;53 (1) 1- 9
PubMed
Casas  JPCavalleri  GLBautista  LESmeeth  LHumphries  SEHingorani  AD Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE review. Am J Epidemiol 2006;164 (10) 921- 935
PubMed
Zintzaras  EKitsios  GStefanidis  I Response to endothelial nitric oxide synthase polymorphisms and susceptibility to hypertension: genotype versus haplotype analysis [letter]. Hypertension 2007;49 (1) e210.1161/01.HYP.0000251076.18254.edv1
Cordell  HJ Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002;11 (20) 2463- 2468
PubMed
Cooper  RS Gene–environment interactions and the etiology of common complex disease. Ann Intern Med 2003;139 (5, pt 2) 437- 440
PubMed
National Institute on Aging, Genetic Association Database. http://geneticassociationdb.nih.gov/cgi-bin/index.cgi. Accessed September 3, 2007

Figures

Place holder to copy figure label and caption
Figure 1.

Flowchart of retrieved studies and studies that were excluded, with specification of the reasons.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

Results of the cumulative meta-analysis. The random effects pooled odds ratio with the corresponding 95% confidence interval at the end of each information step is shown.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Results of the recursive cumulative meta-analysis. The relative change in random effects pooled odds ratio (OR) in each information step (OR in the next year/OR in the current year) for the allelic contrast is shown.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.

Subgroup and sensitivity analyses for the components of study quality for the allelic contrast. HWE indicates Hardy-Weinberg equilibrium.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Description of Studies Meeting Eligibility Criteria
Table Graphic Jump LocationTable 2. Odds Ratios (ORs) and Heterogeneity Results for the Genetic Contrasts of ACE I/D Gene Polymorphic Variation for CAD and Subgroup Populations
Table Graphic Jump LocationTable 3. Odds Ratios (ORs) and Heterogeneity Results for the Genetic Contrasts of the ACE I/D Gene Polymorphic Variant for CAD in Differen Racial/Ethnic Populations

References

Wang  Q Molecular genetics of coronary artery disease. Curr Opin Cardiol 2005;20 (3) 182- 188
PubMed
Topol  EJ The genomic basis of myocardial infarction. J Am Coll Cardiol 2005;46 (8) 1456- 1465
PubMed
Hackam  DGAnand  SS Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 2003;290 (7) 932- 940
PubMed
Carluccio  MSoccio  MDe Caterina  R Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system. Eur J Clin Invest 2001;31 (6) 476- 488
PubMed
Cambien  FPoirier  OLecerf  L  et al.  Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992;359 (6396) 641- 644
PubMed
Hoshida  SKato  JNishino  M  et al.  Increased angiotensin-converting enzyme activity in coronary artery specimens from patients with acute coronary syndrome. Circulation 2001;103 (5) 630- 633
PubMed
Haberbosch  WBohle  RMFranke  FE  et al.  The expression of angiotensin-I converting enzyme in human atherosclerotic plaques is not related to the deletion/insertion polymorphism but to the risk of restenosis after coronary interventions. Atherosclerosis 1997;130 (1-2) 203- 213
PubMed
Yusuf  SSleight  PPogue  JBosch  JDavies  RDagenais  GHeart Outcomes Prevention Evaluation Study Investigators, Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342 (3) 145- 153
PubMed
Danchin  NCucherat  MThuillez  CDurand  EKadri  ZSteg  PG Angiotensin-converting enzyme inhibitors in patients with coronary artery disease and absence of heart failure or left ventricular systolic dysfunction: an overview of long-term randomized controlled trials. Arch Intern Med 2006;166 (7) 787- 796
PubMed
Rigat  BHubert  CCorvol  PSoubrier  F PCR detection of the insertion/deletion polymorphism of the human angiotensin-converting enzyme gene. Nucleic Acids Res 1992;20 (6) 1433
PubMed
Rigat  BHubert  CAlhenc-Gelas  FCambien  FCorvol  PSoubrier  F An insertion/deletion polymorphism in the human angiotensin I–converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86 (4) 1343- 1346
PubMed
Tiret  LRigat  BVisvikis  S Evidence from combined segregation and linkage analysis that a variant of ACE gene controls plasma ACE levels. Am J Hum Genet 1992;51 (1) 197- 205
PubMed
Costerousse  OAllegrini  JLopez  MAlhenc-Gelas  F Angiotensin I–converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 1993;290 (pt 1) 33- 40
PubMed
Danser  AHSchalekamp  MADHBax  WA  et al.  Angiotensin-converting enzyme in the human heart: effect of the deletion:insertion polymorphism. Circulation 1995;92 (6) 1387- 1388
PubMed
Biller  HZissel  GRuprecht  BNauck  MBusse Grawitz  AMuller-Quernheim  J Genotype-corrected reference values for serum angiotensin-converting enzyme. Eur Respir J 2006;28 (6) 1085- 1090
PubMed
Samani  NJThompson  JRO’Toole  LChanner  KWoods  KL A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996;94 (4) 708- 712
PubMed
Keavney  B McKenzie  CParish  S  et al. International Studies of Infarct Survival (ISIS) Collaborators, Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. Lancet 2000;355 (9202) 434- 442
PubMed
Staessen  JAWang  JGGinocchio  G  et al.  The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997;15 (12, pt 2) 1579- 1592
PubMed
Agerholm-Larsen  BNordestgaard  BGTybjaerg-Hansen  A ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000;20 (2) 484- 492
PubMed
Morgan  TMCoffey  CSKrumholz  HM Overestimation of genetic risks owing to small sample sizes in cardiovascular studies. Clin Genet 2003;64 (1) 7- 17
PubMed
Bonnici  FKeavney  BCollins  RDanesh  J Angiotensin converting enzyme insertion or deletion polymorphism and coronary restenosis: meta-analysis of 16 studies. BMJ 2002;325 (7363) 517- 519
PubMed
Kitsios  GZintzaras  E Genetic variation associated with ischemic heart failure: a HuGE review and meta-analysis. Am J Epidemiol 2007;166 (6) 619- 633
PubMed
de Bakker  PIYelensky  RPeer  IGabriel  SBDaly  MJAltshuler  D Efficiency and power in genetic association studies. Nat Genet 2005;37 (11) 1217- 1223
PubMed
Clayton  DGWalker  NMSmyth  DJ  et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 2005;37 (11) 1243- 1246
PubMed
Zou  GZhao  H The impacts of errors in individual genotyping and DNA pooling on association studies. Genet Epidemiol 2004;26 (1) 1- 10
PubMed
Colhoun  HMMcKeigue  PMDavey  SG Problems of reporting genetic associations with complex outcomes. Lancet 2003;361 (9360) 865- 872
PubMed
Zintzaras  ELau  J Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches.  J Clin Epidemiol In press.10.1016/j.jclinepi.2007.12.011
Lau  JAntman  EMJimenez-Silva  JKupelnick  BMosteller  FChalmers  TC Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 1992;327 (4) 248- 254
PubMed
Zintzaras  EKitsios  G Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches. J Hum Genet 2006;51 (11) 1015- 1021
PubMed
Zintzaras  EIoannidis  JP Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol 2005;28 (2) 123- 137
PubMed
Whitehead  A Meta-analysis of Controlled Clinical Trials.  New York, NY John Wiley & Sons Inc2002;
Ioannidis  JPTrikalinos  TAZintzaras  E Extreme between-study homogeneity in meta-analyses could offer useful insights. J Clin Epidemiol 2006;59 (10) 1023- 1032
PubMed
Huedo-Medina  TB Sanchez-Meca  JMarin-Martinez  FBotella  J Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 2006;11 (2) 193- 206
PubMed
Zintzaras  EKitsios  GStefanidis  I Endothelial NO synthase gene polymorphisms and hypertension: a meta-analysis. Hypertension 2006;48 (4) 700- 710
PubMed
Ioannidis  JLau  J Evolution of treatment effects over time: empirical insight from recursive cumulative metaanalyses. Proc Natl Acad Sci U S A 2001;98 (3) 831- 836
PubMed
Sterne  JAEgger  M Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001;54 (10) 1046- 1055
PubMed
Begg  CBMazumdar  M Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50 (4) 1088- 1101
PubMed
Zintzaras  EHadjigeorgiou  GM Association of paraoxonase 1 gene polymorphisms with risk of Parkinson's disease: a meta-analysis. J Hum Genet 2004;49 (9) 474- 481
PubMed
Ioannidis  JPNtzani  EETrikalinos  TA “Racial” differences in genetic effects for complex diseases. Nat Genet 2004;36 (12) 1312- 1318
PubMed
Egger  MDavey Smith  GAltma  DG Systematic Reviews in Health Care: Meta-analysis in Context. 2nd ed. London, England BMJ Books2001;
Shanmugam  VSell  KWSaha  BK Mistyping ACE heterozygotes. PCR Methods Appl 1993;3 (2) 120- 121
PubMed
Attia  JThakkinstian  AD’Este  C Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 2003;56 (4) 297- 303
PubMed
Zintzaras  EKoufakis  TZiakas  PDRodopoulou  PGiannouli  SVoulgarelis  M A meta-analysis of genotypes and haplotypes of methylenetetrahydrofolate reductase gene polymorphisms in acute lymphoblastic leukemia. Eur J Epidemiol 2006;21 (7) 501- 510
PubMed
Zintzaras  E Methylenetetrahydrofolate reductase gene and susceptibility to breast cancer: a meta-analysis. Clin Genet 2006;69 (4) 327- 336
PubMed
Zintzaras  E C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet 2006;16 (3) 105- 115
PubMed
Zintzaras  E Brain-derived neurotrophic factor gene polymorphisms and schizophrenia: a meta-analysis. Psychiatr Genet 2007;17 (2) 69- 75
PubMed
Zintzaras  E Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet 2006;51 (7) 618- 624
PubMed
Zintzaras  EHadjigeorgiou  GM The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson's disease: a meta-analysis. J Hum Genet 2005;50 (11) 560- 566
PubMed
Zintzaras  EChatzoulis  DZKarabatsas  CHStefanidis  I The relationship between C677T methylenetetrahydrofolate reductase gene polymorphism and retinopathy in type 2 diabetes: a meta-analysis. J Hum Genet 2005;50 (6) 267- 275
PubMed
Zintzaras  EStefanidis  I Association between the GLUT1 gene polymorphism and the risk of diabetic nephropathy: a meta-analysis. J Hum Genet 2005;50 (2) 84- 91
PubMed
Weir  BS Genetic Data Analysis II: Methods for Discrete Population Genetic Data.  Sunderland, MA Sinauer Associates1996;
Bøhn  MBerge  KEBakken  AErikssen  JBerg  K Insertion/deletion (I/D) polymorphism at the locus for angiotensin I-converting enzyme and myocardial infarction. Clin Genet 1993;44 (6) 292- 297
PubMed
Evans  AEPoirier  OKee  F  et al.  Polymorphisms of the angiotensin-converting-enzyme gene in subjects who die from coronary heart disease. Q J Med 1994;87 (4) 211- 214
PubMed
Leatham  EBarley  JRedwood  S  et al.  Angiotensin-1 converting enzyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina. J Hum Hypertens 1994;8 (8) 635- 638
PubMed
Miettinen  HEKorpela  KHamalainen  LKontula  K Polymorphisms of the apolipoprotein and angiotensin converting enzyme genes in young North Karelian patients with coronary heart disease. Hum Genet 1994;94 (2) 189- 192
PubMed
Ruiz  JBlanche  HCohen  N  et al.  Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is strongly associated with coronary heart disease in non–insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 1994;91 (9) 3662- 3665
PubMed
Arbustini  EGrasso  MFasani  R  et al.  Angiotensin converting enzyme gene deletion allele is independently and strongly associated with coronary atherosclerosis and myocardial infarction. Br Heart J 1995;74 (6) 584- 591
PubMed
Beohar  NDamaraju  SPrather  A  et al.  Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease. J Investig Med 1995;43 (3) 275- 280
PubMed
Friedl  WKrempler  FPaulweber  BPichler  MSandhofer  F A deletion polymorphism in the angiotensin converting enzyme gene is not associated with coronary heart disease in an Austrian population. Atherosclerosis 1995;112 (2) 137- 143
PubMed
Kamitani  ARakugi  HHigaki  J  et al.  Enhanced predictability of myocardial infarction in Japanese by combined genotype analysis. Hypertension 1995;25 (5) 950- 953
PubMed
Katsuya  TKoike  GYee  TW  et al.  Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 1995;345 (8965) 1600- 1603
PubMed
Keavney  BDDudley  CRStratton  IM  et al.  UK prospective diabetes study (UKPDS) 14: association of angiotensin-converting enzyme insertion/deletion polymorphism with myocardial infarction in NIDDM. Diabetologia 1995;38 (8) 948- 952
PubMed
Lindpaintner  KPfeffer  MAKreutz  R  et al.  A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995;332 (11) 706- 711
PubMed
Ludwig  ECorneli  PSAnderson  JLMarshall  HWLalouel  JMWard  RH Angiotensin-converting enzyme gene polymorphism is associated with myocardial infarction but not with development of coronary stenosis. Circulation 1995;91 (8) 2120- 2124
PubMed
Mattu  RKNeedham  EWGalton  DJFrangos  EClark  AJCaulfield  MA DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation 1995;91 (2) 270- 274
PubMed
Panahloo  AAndres  CMohamed-Ali  V  et al.  The insertion allele of the ACE gene I/D polymorphism: a candidate gene for insulin resistance? Circulation 1995;92 (12) 3390- 3393
PubMed
Payne  MNBartlett  WAMcDonald  FMurray  RGBeattie  JMJones  AF Lipoprotein(a), ACE, and family history of CAD. Circulation 1995;92 (12) 3583
PubMed
Takahashi  KNakamura  HKubota  ITakahashi  NTomoike  H Association of ACE gene polymorphisms with coronary artery disease in a northern area of Japan. Jpn Heart J 1995;36 (5) 557- 564
PubMed
Tarnow  LCambien  FRossing  P  et al.  Insertion/deletion polymorphism in the angiotensin-I–converting enzyme gene is associated with coronary heart disease in IDDM patients with diabetic nephropathy. Diabetologia 1995;38 (7) 798- 803
PubMed
Ukkola  OSavolainen  MJSalmela  PIvon Dickhoff  KKiema  TKesaniemi  YA Insertion/deletion polymorphism in the angiotensin-converting enzyme gene associated with macroangiopathy and blood pressure in patients with non–insulin-dependent diabetes mellitus. J Mol Med 1995;73 (6) 307- 311
PubMed
Zhang  YJeffrey  SBarley  JHann  CCarter  NKaski  JC Angiotensin-converting enzyme insertion/deletion polymorphism in angina pectoris with normal coronary arteriograms. Am J Cardiol 1996;77 (10) 877- 879
PubMed
Nakata  YKatsuya  TRakugi  H  et al.  Polymorphism of the apolipoprotein E and angiotensin-converting enzyme genes in Japanese subjects with silent myocardial ischemia. Hypertension 1996;27 (6) 1205- 1209
PubMed
Nakauchi  YSuehiro  TYamamoto  M  et al.  Significance of angiotensin I–converting enzyme and angiotensin II type 1 receptor gene polymorphisms as risk factors for coronary heart disease. Atherosclerosis 1996;125 (2) 161- 169
PubMed
Ramasawmy  RManraj  MKotea  N  et al.  Lack of association of angiotensin I–converting enzyme gene polymorphism and premature myocardial infarction in Mauritian Indians. Clin Genet 1996;50 (6) 551- 554
PubMed
Saha  NTalmud  PJTay  JSHumphries  SEBasair  J Lack of association of angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism with CAD in two Asian populations. Clin Genet 1996;50 (3) 121- 125
PubMed
Samani  NJO’Toole  LMartin  D  et al.  Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of and prognosis after myocardial infarction. J Am Coll Cardiol 1996;28 (2) 338- 344
PubMed
Wang  XL McCredie  RMWilcken  DE Genotype distribution of angiotensin-converting enzyme polymorphism in Australian healthy and coronary populations and relevance to myocardial infarction and coronary artery disease. Arterioscler Thromb Vasc Biol 1996;16 (1) 115- 119
PubMed
Wenzel  KBlackburn  AErnst  M  et al.  Relationship of polymorphisms in the renin-angiotensin system and in E-selectin of patients with early severe coronary heart disease. J Mol Med 1997;75 (1) 57- 61
PubMed
Winkelmann  BRNauck  MKlein  B  et al.  Deletion polymorphism of the angiotensin I–converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med 1996;125 (1) 19- 25
PubMed
Agerholm-Larsen  B Nordestgaard  BGSteffensen  RSorensen  TIJensen  GTybjaerg-Hansen  A ACE gene polymorphism: ischemic heart disease and longevity in 10,150 individuals: a case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation 1997;95 (10) 2358- 2367
PubMed
Corbo  RMVilardo  TMantuano  ERuggeri  MGemma  ATScacchi  R Apolipoproteins B and E, and angiotensin I–converting enzyme (ACE) genetic polymorphisms in Italian women with coronary artery disease (CAD) and their relationships with plasma lipid and apolipoprotein levels. Clin Genet 1997;52 (2) 77- 82
PubMed
Fujimura  TYokota  MKato  S  et al.  Lack of association of angiotensin converting enzyme gene polymorphism or serum enzyme activity with coronary artery disease in Japanese subjects. Am J Hypertens 1997;10 (12, pt 1) 1384- 1390
PubMed
Hong  SHKang  BYPark  WHKim  JQLee  CC Genetic variation of the angiotensin-converting enzyme gene: increased frequency of the insertion allele in Koreans. Clin Genet 1997;51 (1) 35- 38
PubMed
Iwai  NTamaki  SOhmichi  NKinoshita  M The II genotype of angiotensin-converting enzyme gene delays the onset of acute coronary syndromes. Arterioscler Thromb Vasc Biol 1997;17 (9) 1730- 1733
PubMed
Jeffers  BWEstacio  RORaynolds  MVSchrier  RW Angiotensin-converting enzyme gene polymorphism in non–insulin dependent diabetes mellitus and its relationship with diabetic nephropathy. Kidney Int 1997;52 (2) 473- 477
PubMed
Krizanová  OObdrzalkova  DPolakova  HJelok  IHudecova  S Molecular variants of the renin-angiotensin system components in the Slovak population. Physiol Res 1997;46 (5) 357- 361
PubMed
Kuroki  SIkeda  UMaeda  YSekiguchi  HShimada  K Lack of association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and vasospastic angina. Clin Cardiol 1997;20 (10) 873- 876
PubMed
Sigusch  HHVogt  SGruber  U  et al.  Angiotensin-I–converting enzyme DD genotype is a risk factor of coronary artery disease. Scand J Clin Lab Invest 1997;57 (2) 127- 132
PubMed
Tokgözoğlu  SLAlikaşifoğlu  MAtalar  E  et al.  Angiotensin converting enzyme gene polymorphism and the risk and extent of ischemic heart disease among Turkish patients. Coron Artery Dis 1997;8 (3-4) 137- 141
PubMed
Akar  NAras  OOmurlu  KCin  S Deletion polymorphism at the angiotensin-converting enzyme gene in Turkish patients with coronary artery disease. Scand J Clin Lab Invest 1998;58 (6) 491- 495
PubMed
Anderson  JLCarlquist  JFKing  GJ  et al.  Angiotensin-converting enzyme genotypes and risk for myocardial infarction in women. J Am Coll Cardiol 1998;31 (4) 790- 796
PubMed
Arca  M Pannitteri  GCampagna  F  et al.  Angiotensin-converting enzyme gene polymorphism is not associated with coronary atherosclerosis and myocardial infarction in a sample of Italian patients. Eur J Clin Invest 1998;28 (6) 485- 490
PubMed
Biggart  SChin  DFauchon  M  et al.  Association of genetic polymorphisms in the ACE, ApoE, and TGF beta genes with early onset ischemic heart disease. Clin Cardiol 1998;21 (11) 831- 836
PubMed
Gardemann  AFink  MStricker  J  et al.  ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998;139 (1) 153- 159
PubMed
Huang  XHRantalaiho  VWirta  O  et al.  Angiotensin-converting enzyme gene polymorphism is associated with coronary heart disease in non–insulin-dependent diabetic patients evaluated for 9 years. Metabolism 1998;47 (10) 1258- 1262
PubMed
Nakai  KFusazaki  TZhang  T  et al.  Polymorphism of the apolipoprotein E and angiotensin I converting enzyme genes in Japanese patients with myocardial infarction. Coron Artery Dis 1998;9 (6) 329- 334
PubMed
O’Malley  J PMaslen  CLIllingworth  DR Angiotensin-converting enzyme DD genotype and cardiovascular disease in heterozygous familial hypercholesterolemia. Circulation 1998;97 (18) 1780- 1783
PubMed
Wesolowska  EMarcil  MLussier-Cacan  SDavignon  JLatour  YGenest  J  Jr Angiotensin converting enzyme insertion/deletion polymorphism in French Canadian subjects with premature coronary artery disease. Pathol Biol (Paris) 1998;46 (5) 295- 300
PubMed
Fernández-Arcás  NDieguez-Lucena  JLMuñoz-Moran  E  et al.  The genotype interactions of methylenetetrahydrofolate reductase and renin-angiotensin system genes are associated with myocardial infarction. Atherosclerosis 1999;145 (2) 293- 300
PubMed
Ferrières  JElias  ARuidavets  JB  et al.  Carotid intima-media thickness and coronary heart disease risk factors in a low-risk population. J Hypertens 1999;17 (6) 743- 748
PubMed
Isbir  TYilmaz  HAgachan  BAydin  MIsbir  CS Association between angiotensin-converting enzyme gene polymorphism and coronary artery disease. IUBMB Life 1999;48 (2) 205- 207
PubMed
Lin  JJYueh  KCHarn  HJChang  DCChang  CYYeh  YH Lack of association between deletion polymorphism of the ACE gene and ischemic vascular diseases in a Chinese population in Taiwan. Zhonghua Yi Xue Za Zhi (Taipei) 1999;62 (11) 756- 763
PubMed
Nakagami  HIkeda  UMaeda  Y  et al.  Coronary artery disease and endothelial nitric oxide synthase and angiotensin-converting enzyme gene polymorphisms. J Thromb Thrombolysis 1999;8 (3) 191- 195
PubMed
Pfohl  MKoch  MPrescod  SHaase  KKHaring  HUKarsch  KR Angiotensin I–converting enzyme gene polymorphism, coronary artery disease and myocardial infarction: an angiographically controlled study. Eur Heart J 1999;20 (18) 1318- 1325
PubMed
Rice  GIFoy  CAGrant  PJ Angiotensin converting enzyme and angiotensin II type 1–receptor gene polymorphisms and risk of ischaemic heart disease. Cardiovasc Res 1999;41 (3) 746- 753
PubMed
Batalla  AAlvarez  RReguero  JR  et al.  Synergistic effect between apolipoprotein E and angiotensinogen gene polymorphisms in the risk for early myocardial infarction. Clin Chem 2000;46 (12) 1910- 1915
PubMed
Canavy  IHenry  MMorange  PE  et al.  Genetic polymorphisms and coronary artery disease in the south of France. Thromb Haemost 2000;83 (2) 212- 216
PubMed
Dzimiri  NBasco  CMoorji  AMeyer  BF Angiotensin-converting enzyme polymorphism and the risk of coronary heart disease in the Saudi male population. Arch Pathol Lab Med 2000;124 (4) 531- 534
PubMed
Fatini  CAbbate  RPepe  G  et al.  Searching for a better assessment of the individual coronary risk profile: the role of angiotensin-converting enzyme, angiotensin II type 1 receptor and angiotensinogen gene polymorphisms. Eur Heart J 2000;21 (8) 633- 638
PubMed
Fomicheva  EVGukova  SPLarionova-Vasina  VIKovalev  YRSchwartz  EI Gene-gene interaction in the RAS system in the predisposition to myocardial infarction in elder population of St. Petersburg (Russia). Mol Genet Metab 2000;69 (1) 76- 80
PubMed
Gürlek  AGülec  SKarabulut  H  et al.  Relation between the insertion/deletion polymorphism of the angiotensin I converting enzyme gene and restenosis after coronary stenting. J Cardiovasc Risk 2000;7 (6) 403- 407
PubMed
Hubacek  JAPitha  JPodrapska  I  et al.  Insertion/deletion polymorphism in the angiotensin-converting enzyme gene in myocardial infarction survivors. Med Sci Monit 2000;6 (3) 503- 506
PubMed
Kee  FMorrison  CPoirier  O  et al.  Angiotensin II type-I receptor and ACE polymorphisms and risk of myocardial infarction in men and women. Eur J Clin Invest 2000;30 (12) 1076- 1082
PubMed
Mansur  APAnnicchino-Bizzacchi  JFavarato  DAvakian  SDCesar  LARamires  JA Angiotensin-converting enzyme and apolipoproteins genes polymorphism in coronary artery disease. Clin Cardiol 2000;23 (5) 335- 340
PubMed
Peterlin  BPetrovic  DZorc  MKeber  I Deletion/insertion polymorphism in the angiotension-converting enzyme gene as a risk factor in the Slovenian patients with coronary heart disease. Pflugers Arch 2000;439 (3) ((suppl)) R40- R41
PubMed
van Bockxmeer  FMMamotte  CDBurke  VTaylor  RR Angiotensin-converting enzyme gene polymorphism and premature coronary heart disease. Clin Sci (Lond) 2000;99 (3) 247- 251
PubMed
Wierzbicki  ASLambert-Hammill  MLumb  PJCrook  MA Renin-angiotensin system polymorphisms and coronary events in familial hypercholesterolemia. Hypertension 2000;36 (5) 808- 812
PubMed
Alvarez  RGonzalez  PBatalla  A  et al.  Association between the NOS3 (−786 T/C) and the ACE (I/D) DNA genotypes and early coronary artery disease. Nitric Oxide 2001;5 (4) 343- 348
PubMed
Fernández-Arcás  NDieguez-Lucena  JLMuñoz-Morán  E  et al.  Both alleles of the M235T polymorphism of the angiotensinogen gene can be a risk factor for myocardial infarction. Clin Genet 2001;60 (1) 52- 57
PubMed
Hopkins  PNStephenson  SWu  LLRiley  WAXin  YHunt  SC Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia. Am J Cardiol 2001;87 (5) 547- 553
PubMed
Kawakami  KOkumura  KMatsui  H  et al.  The apolipoprotein E genotype influences the risk for vasospastic angina. Can J Cardiol 2001;17 (6) 660- 666
PubMed
Rodríguez-Pérez  JCRodríguez-Esparragón  FHernández-Perera  O  et al.  Association of angiotensinogen M235T and A(−6)G gene polymorphisms with coronary heart disease with independence of essential hypertension: the PROCAGENE Study: Prospective Cardiac Gene. J Am Coll Cardiol 2001;37 (6) 1536- 1542
PubMed
Spiridonova  MGStepanov  VAPuzyrev  VPKarpov  RS The estimation of gametic disequilibrium between DNA markers in candidate genes for coronary artery disease (CAD) and the associations of gene complexes with risk factors for CAD. Int J Circumpolar Health 2001;60 (2) 222- 227
PubMed
Steeds  RPWardle  ASmith  PDMartin  DChanner  KSSamani  NJ Analysis of the postulated interaction between the angiotensin II sub-type 1 receptor gene A1166C polymorphism and the insertion/deletion polymorphism of the angiotensin converting enzyme gene on risk of myocardial infarction. Atherosclerosis 2001;154 (1) 123- 128
PubMed
Takagi  SGoto  YNonogi  HBaba  SIwai  N Genetic polymorphisms of angiotensin converting enzyme (I/D) and endothelial nitric oxide synthase (T(-788)C) genes in Japanese patients with myocardial infarction. Thromb Haemost 2001;86 (5) 1339- 1340
PubMed
Viitanen  LPihlajamäki  JHalonen  P  et al.  Association of angiotensin converting enzyme and plasminogen activator inhibitor-1 promoter gene polymorphisms with features of the insulin resistance syndrome in patients with premature coronary heart disease. Atherosclerosis 2001;157 (1) 57- 64
PubMed
Araz  MAynacioglu  SOkan  VAkdemir  IAktaran  S Angiotensin-converting enzyme gene polymorphism and coronary heart disease in Turkish type 2 diabetic patients. Acta Cardiol 2002;57 (4) 265- 269
PubMed
Ermis  CTsai  MYHanson  NQAkar  NAras  O Angiotensin I converting enzyme, angiotensin II type 1 receptor and angiotensinogen polymorphisms and early myocardial infarction in Turkish population. Thromb Haemost 2002;88 (4) 693- 694
PubMed
Hernández Ortega  EMedina Fernández-Aceituno  ARodríguez Esparragón  FJ  et al.  The involvement of the renin-angiotensin system gene polymorphisms in coronary heart disease. Rev Esp Cardiol 2002;55 (2) 92- 99
PubMed
Hooper  WC Dowling  NFWenger  NKDilley  AEllingsen  DEvatt  BL Relationship of venous thromboembolism and myocardial infarction with the renin-angiotensin system in African-Americans. Am J Hematol 2002;70 (1) 1- 8
PubMed
Olivieri  OGrazioli  SPizzolo  F  et al.  Different impact of deletion polymorphism of gene on the risk of renal and coronary artery disease. J Hypertens 2002;20 (1) 37- 43
PubMed
Sobstyl  JDzida  GPuzniak  AMosiewicz  JHanzlik  J Angiotensin-converting enzyme gene insertion/deletion polymorphism in Polish patients with myocardial infarction. Ann Univ Mariae Curie Sklodowska Med 2002;57 (2) 21- 28
PubMed
Covolo  LGelatti  UMetra  M  et al.  Angiotensin-converting-enzyme gene polymorphism and heart failure: a case-control study. Biomarkers 2003;8 (5) 429- 436
PubMed
Martin Fernandez  MRodriguez Reguero  JJGonzález  P Angiotensin-converting enzyme polymorphism (I/D) and coronary heart disease in young adults. J Am Coll Cardiol 2003;42 (10) 1864
PubMed
Holmer  SRBickeböller  HHengstenberg  C  et al.  Angiotensin converting enzyme gene polymorphism and myocardial infarction: a large association and linkage study. Int J Biochem Cell Biol 2003;35 (6) 955- 962
PubMed
Klemm  TMittrach-Schorin  SNeumann  S  et al.  No association between the angiotensin-converting-enzyme gene insertion/deletion polymorphism and the occurrence of macroangiopathy in patients with diabetes mellitus type 2. Horm Metab Res 2003;35 (1) 43- 47
PubMed
Marques-Vidal  PBongard  VRuidavets  JBFauvel  JPret  BFerrières  J Effect of apolipoprotein E alleles and angiotensin-converting enzyme insertion/deletion polymorphisms on lipid and lipoprotein markers in middle-aged men and in patients with stable angina pectoris or healed myocardial infarction. Am J Cardiol 2003;92 (9) 1102- 1105
PubMed
Nair  KGShalia  KKAshavaid  TFDalal  JJ Coronary heart disease, hypertension, and angiotensinogen gene variants in Indian population. J Clin Lab Anal 2003;17 (5) 141- 146
PubMed
Okura  YHayashi  KShingu  T  et al.  Angiotensin-converting enzyme insertion/deletion genotype is associated with the activities of plasma coagulation factor VII and X independent of triglyceride metabolism. Coron Artery Dis 2003;14 (4) 285- 291
PubMed
Zak  INiemiec  PSarecka  B  et al.  Carrier-state of D allele in ACE gene insertion/deletion polymorphism is associated with coronary artery disease, in contrast to the C677→T transition in the MTHFR gene. Acta Biochim Pol 2003;50 (2) 527- 534
PubMed
Bautista  LEArdila  MEGamarra  GVargas  CIArenas  IA Angiotensin-converting enzyme gene polymorphism and risk of myocardial infarction in Colombia. Med Sci Monit 2004;10 (8) CR473- CR479
PubMed
Ishimitsu  TTsukada  KOhta  S  et al.  Increased cardiovascular risk in long-term hemodialysis patients carrying deletion allele of ACE gene polymorphism. Am J Kidney Dis 2004;44 (3) 466- 475
PubMed
Karaali  ZEAgachan  BYilmaz  HIsbir  T Angiotensin-converting enzyme I/D gene polymorphisms and effects of left ventricular hypertrophy in Turkish myocardial infarction patients. Acta Cardiol 2004;59 (5) 493- 497
PubMed
Mata-Balaguer  Tde la Herran  RRuiz-Rejon  CRuiz-Rejon  MGarrido-Ramos  MARuiz-Rejon  F Angiotensin-converting enzyme and p22(phox) polymorphisms and the risk of coronary heart disease in a low-risk Spanish population. Int J Cardiol 2004;95 (2-3) 145- 151
PubMed
Mendonça  IFreitas  IASousa  CA  et al.  Angiotensin converting enzyme gene polymorphisms and coronary risk in a Portuguese population. Rev Port Cardiol 2004;23 (12) 1593- 1601
PubMed
Nacak  MDavutoğlu  VSoydinç  S  et al.  Association between angiotensin converting enzyme gene polymorphism and coronary artery disease in individuals of the South-Eastern Anatolian population. Anadolu Kardiyol Derg 2004;4 (1) 45- 51
PubMed
Petrovic  DBregar  DGuzic-Salobir  B  et al.  Sex difference in the effect of ACE-DD genotype on the risk of premature myocardial infarction. Angiology 2004;55 (2) 155- 158
PubMed
Ranjith  NPegoraro  RJRom  LLanning  PANaidoo  DP Renin-angiotensin system and associated gene polymorphisms in myocardial infarction in young South African Indians. Cardiovasc J S Afr 2004;15 (1) 22- 26
PubMed
Acarturk  EAttila  GBozkurt  AAkpinar  OMatyar  SSeydaoglu  G Insertion/deletion polymorphism of the angiotensin converting enzyme gene in coronary artery disease in southern Turkey. J Biochem Mol Biol 2005;38 (4) 486- 490
PubMed
Araújo  MAGoulart  LRCordeiro  ER  et al.  Genotypic interactions of renin-angiotensin system genes in myocardial infarction. Int J Cardiol 2005;103 (1) 27- 32
PubMed
Arnett  DKDavis  BRFord  CE  et al.  Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) Study. Circulation 2005;111 (25) 3374- 3383
PubMed
Berdeli  ASekuri  CSirri Cam  F  et al.  Association between the eNOS (Glu298Asp) and the RAS genes polymorphisms and premature coronary artery disease in a Turkish population. Clin Chim Acta 2005;351 (1-2) 87- 94
PubMed
Falchi  AGiovannoni  LPiras  IS  et al.  Prevalence of genetic risk factors for coronary artery disease in Corsica island (France). Exp Mol Pathol 2005;79 (3) 210- 213
PubMed
Guneri  SBaris  NAytekin  DAkdeniz  BPekel  NBozdemir  V The relationship between angiotensin converting enzyme gene polymorphism, coronary artery disease, and stent restenosis: the role of angiotensin converting enzyme inhibitors in stent restenosis in patients with diabetes mellitus. Int Heart J 2005;46 (5) 889- 897
PubMed
Heltianu  CCostache  GGafencu  A  et al.  Relationship of eNOS gene variants to diseases that have in common an endothelial cell dysfunction. J Cell Mol Med 2005;9 (1) 135- 142
PubMed
Méthot  JHamelin  BABogaty  PArsenault  MPlante  SPoirier  P ACE-DD genotype is associated with the occurrence of acute coronary syndrome in postmenopausal women. Int J Cardiol 2005;105 (3) 308- 314
PubMed
Riera-Fortuny  CReal  JTChaves  FJ  et al.  The relation between obesity, abdominal fat deposit and the angiotensin-converting enzyme gene I/D polymorphism and its association with coronary heart disease. Int J Obes (Lond) 2005;29 (1) 78- 84
PubMed
Sayed-Tabatabaei  FASchut  AFVásquez  AA  et al.  Angiotensin converting enzyme gene polymorphism and cardiovascular morbidity and mortality: the Rotterdam Study. J Med Genet 2005;42 (1) 26- 30
PubMed
Scheer  WDBoudreau  DAHixson  JE  et al.  ACE insert/delete polymorphism and atherosclerosis. Atherosclerosis 2005;178 (2) 241- 247
PubMed
Seckin  DIlhan  NIlhan  NOzbay  Y The relationship between ACE insertion/deletion polymorphism and coronary artery disease with or without myocardial infarction. Clin Biochem 2006;39 (1) 50- 54
PubMed
Costacou  TChang  YFerrell  REOrchard  TJ Identifying genetic susceptibilities to diabetes-related complications among individuals at low risk of complications: an application of tree-structured survival analysis. Am J Epidemiol 2006;164 (9) 862- 872
PubMed
Muthumala  ACooper  JHumphries  SEHIFMECH Study Group, European differences in the association between ACE I/D polymorphism and incidence of MI may be explained by gene-lipid interaction. Atherosclerosis 2006;189 (2) 474- 477
PubMed
Tütün  UAksöyek  AUlus  AT  et al.  Gene polymorphisms in patients below 35 years of age who underwent coronary artery bypass surgery. Coron Artery Dis 2006;17 (1) 35- 39
PubMed
Vargas-Alarcón  GZamora  JSánchez-García  SRodríguez-Pérez  JMCardoso  GPosadas-Romero  C Angiotensin-I–converting enzyme (ACE) insertion/deletion polymorphism in Mexican patients with coronary artery disease: association with the disease but not with lipid levels. Exp Mol Pathol 2006;81 (2) 131- 135
PubMed
Tsai  CTHwang  JJRitchie  MD  et al.  Renin-angiotensin system gene polymorphisms and coronary artery disease in a large angiographic cohort: detection of high order gene-gene interaction. Atherosclerosis 2007;195 (1) 172- 180
PubMed
Xu  JTurner  ALittle  JBleecker  ERMeyers  DA Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet 2002;111 (6) 573- 574
PubMed
Lehmann  DJCortina-Borja  MWarden  DR  et al.  Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease. Am J Epidemiol 2005;162 (4) 305- 317
PubMed
Sayed-Tabatabaei  FAOostra  BAIsaacs  Avan Duijn  CMWitteman  JC ACE polymorphisms. Circ Res 2006;98 (9) 1123- 1133
PubMed
Lee  EJD Population genetics of the angiotensin-converting enzyme in Chinese. Br J Clin Pharmacol 1994;37 (2) 212- 214
PubMed
Keavney  BMcKenzie  CAConnell  JM  et al.  Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 1998;7 (11) 1745- 1751
PubMed
Zhu  XBouzekri  NSoutham  L  et al.  Linkage and association analysis of angiotensin I–converting enzyme (ACE)–gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet 2001;68 (5) 1139- 1148
PubMed
McKenzie  CAAbecasis  GRKeavney  B  et al.  Trans-ethnic fine mapping of a quantitative trait locus for circulating angiotensin I–converting enzyme (ACE). Hum Mol Genet 2001;10 (10) 1077- 1084
PubMed
Pratt  JHAmbrosius  WTTewksbury  DA  et al.  Serum angiotensinogen concentration in relation to gonadal hormones, body size, and genotype in growing young people. Hypertension 1998;32 (5) 875- 879
PubMed
Weiss  LAPan  LAbney  MOber  C The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006;38 (2) 218- 222
PubMed
Chaer  RABilleh  RMassad  MG Genetics and gene manipulation therapy of premature coronary artery disease. Cardiology 2004;101 (1-3) 122- 130
PubMed
Talmud  PJ How to identify gene-environment interactions in a multifactorial disease: CHD as an example. Proc Nutr Soc 2004;63 (1) 5- 10
PubMed
Kennon  BPetrie  JRSmall  MConnel  JMC Angiotensin-converting enzyme gene and diabetes mellitus. Diabet Med 1999;16 (6) 448- 458
PubMed
Feldman  RD Adrenergic receptor polymorphisms and cardiac function (and dysfunction): a failure to communicate [editorial]? Circulation 2001;103 (8) 1042- 1043
PubMed
Tunstall-Pedoe  HKuulasmaa  KAmouyel  PArveiler  DRajakangas  AMPajak  A Myocardial infarction and coronary deaths in the World Health Organization MONICA Project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents: WHO MONICA Project. Circulation 1994;90 (1) 583- 612
PubMed
Felker  GMShaw  LKO’Connor  CM A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol 2002;39 (2) 210- 218
PubMed
Nissen  SE Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis. Am J Cardiol 2002;89 (4A) 24B- 31B
PubMed
Scharplatz  MPuhan  MASteurer  JPerna  ABachmann  LM Does the angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism modify the response to ACE inhibitor therapy? a systematic review. Curr Control Trials Cardiovasc Med 2005;616
PubMed
Schächter  FFaure-Delanef  LGuénot  F  et al.  Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 1994;6 (1) 29- 32
PubMed
Egger  MJuni  PBartlett  CHolenstein  FSterne  J How important are comprehensive literature searches and the assessment of trial quality in systematic reviews? empirical study. Health Technol Assess 2003;7 (1) 1- 76
PubMed
Thompson  SG Why sources of heterogeneity in meta-analysis should be investigated. BMJ 1994;309 (6965) 1351- 1355
PubMed
Zintzaras  EKaditis  AG Sleep-disordered breathing and blood pressure in children: a meta-analysis. Arch Pediatr Adolesc Med 2007;161 (2) 172- 178
PubMed
Balk  EMBonis  PAMoskowitz  H  et al.  Correlation of quality measures with estimates of treatment effect in meta-analyses of randomized controlled trials. JAMA 2002;287 (22) 2973- 2982
PubMed
Bertomeu  AGarcia-Vidal  OFarre  X  et al.  Preclinical coronary atherosclerosis in a population with low incidence of myocardial infarction: cross sectional autopsy study. BMJ 2003;327 (7415) 591- 592
PubMed
McCarthy  JJParker  ASalem  R  et al.  Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J Med Genet 2004;41 (5) 334- 341
PubMed
Zintzaras  EIoannidis  JPA Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem 2008;32 (1) 38- 46
PubMed
Hedges  LVPigott  TD The power of statistical tests in meta-analysis. Psychol Methods 2001;6 (3) 203- 217
PubMed
Chalmers  TCLau  J Meta-analytic stimulus for changes in clinical trials. Stat Methods Med Res 1993;2 (2) 161- 172
PubMed
Winkelmann  BRHager  JKraus  WE  et al.  Genetics of coronary heart disease: current knowledge and research principles. Am Heart J 2000;140 (4) S11- S26
PubMed
Zintzaras  ELau  J. Trends in meta-analysis of genetic association studies. J Hum Genet 2008;53 (1) 1- 9
PubMed
Casas  JPCavalleri  GLBautista  LESmeeth  LHumphries  SEHingorani  AD Endothelial nitric oxide synthase gene polymorphisms and cardiovascular disease: a HuGE review. Am J Epidemiol 2006;164 (10) 921- 935
PubMed
Zintzaras  EKitsios  GStefanidis  I Response to endothelial nitric oxide synthase polymorphisms and susceptibility to hypertension: genotype versus haplotype analysis [letter]. Hypertension 2007;49 (1) e210.1161/01.HYP.0000251076.18254.edv1
Cordell  HJ Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002;11 (20) 2463- 2468
PubMed
Cooper  RS Gene–environment interactions and the etiology of common complex disease. Ann Intern Med 2003;139 (5, pt 2) 437- 440
PubMed
National Institute on Aging, Genetic Association Database. http://geneticassociationdb.nih.gov/cgi-bin/index.cgi. Accessed September 3, 2007

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 57

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic