0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Estimating National Trends in Inpatient Antibiotic Use Among US Hospitals From 2006 to 2012 ONLINE FIRST

James Baggs, PhD1; Scott K. Fridkin, MD, MPH1; Lori A. Pollack, MD, MPH1; Arjun Srinivasan, MD, MPH1; John A. Jernigan, MD, MS1
[+] Author Affiliations
1Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
JAMA Intern Med. Published online September 19, 2016. doi:10.1001/jamainternmed.2016.5651
Text Size: A A A
Published online

Importance  The rising threat of antibiotic resistance and other adverse consequences resulting from the misuse of antibiotics requires a better understanding of antibiotic use in hospitals in the United States.

Objective  To use proprietary administrative data to estimate patterns of US inpatient antibiotic use in recent years.

Design, Setting, and Participants  For this retrospective analysis, adult and pediatric in-patient antibiotic use data was obtained from the Truven Health MarketScan Hospital Drug Database (HDD) from January 1, 2006, to December 31, 2012. Data from adult and pediatric patients admitted to 1 of approximately 300 participating acute care hospitals provided antibiotic use data for over 34 million discharges representing 166 million patient-days.

Main Outcomes and Measures  We retrospectively estimated the days of therapy (DOT) per 1000 patient-days and the proportion of hospital discharges in which a patient received at least 1 dose of an antibiotic during the hospital stay. We calculated measures of antibiotic usage stratified by antibiotic class, year, and other patient and facility characteristics. We used data submitted to the Centers for Medicare and Medicaid Services Healthcare Cost Report Information System to generate estimated weights to apply to the HDD data to create national estimates of antibiotic usage. A multivariate general estimating equation model to account for interhospital covariance was used to assess potential trends in antibiotic DOT over time.

Results  During the years 2006 to 2012, 300 to 383 hospitals per year contributed antibiotic data to the HDD. Across all years, 55.1% of patients received at least 1 dose of antibiotics during their hospital visit. The overall national DOT was 755 per 1000 patient-days. Overall antibiotic use did not change significantly over time. The multivariable trend analysis of data from participating hospitals did not show a statistically significant change in overall use (total DOT increase, 5.6; 95% CI, −18.9 to 30.1; P = .65). However, the mean change (95% CI) for the following antibiotic classes increased significantly: third- and fourth-generation cephalosporins, 10.3 (3.1-17.5); macrolides, 4.8 (2.0-7.6); glycopeptides, 22.4 (17.5-27.3); β-lactam/β-lactamase inhibitor combinations, 18.0 (13.3-22.6); carbapenems, 7.4 (4.6-10.2); and tetracyclines, 3.3 (2.0-4.7).

Conclusions and Relevance  Overall DOT of all antibiotics among hospitalized patients in US hospitals has not changed significantly in recent years. Use of some antibiotics, especially broad spectrum agents, however, has increased significantly. This trend is worrisome in light of the rising challenge of antibiotic resistance. Our findings can help inform national efforts to improve antibiotic use by suggesting key targets for improvement interventions.

Figures in this Article

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Figures

Place holder to copy figure label and caption
Figure 1.
Mean DOT per 1000 Patient-days for All Antibiotics

Across all hospitals, the change in mean DOT per 1000 patient-days were estimated by generalized estimating equation models controlling for case mix index, average patient age, bed size category, teaching status, urban or rural facility location, proportion of surgical discharges, average comorbidity score, facility geographic location, critical care setting, and proportion of inpatient-days in which the International Classification of Diseases, Ninth Revision, Clinical Modification21 diagnosis code was related to an infection. Data points represent mean DOT per 1000 patient-days for each antibiotic class, and the whiskers represent 95% CIs. DOT indicates days of therapy.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Mean DOT per 1000 Patient-days by US Census Division Between January 1, 2006, and December 31, 2012

Across all hospitals, the mean DOT per 1000 patient-days by census division were estimated by generalized estimating equation models controlling for year, case mix index, average patient age, bed size category, teaching status, urban or rural facility location, proportion of surgical discharges, average comorbidity score, facility geographic location, critical care setting, and proportion of inpatient-days in which the International Classification of Diseases, Ninth Revision, Clinical Modification21 diagnosis code was related to an infection. DOT indicates days of therapy.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

8,346 Views
0 Citations
×

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles
Jobs
JAMAevidence.com

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Evidence to Support the Update

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Evidence Summary and Review 1

brightcove.createExperiences();