0
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 50.19.47.197. Please contact the publisher to request reinstatement.
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Effect of Medicare’s Nonpayment for Hospital-Acquired Conditions Lessons for Future Policy FREE

Teresa M. Waters, PhD1; Michael J. Daniels, ScD2,3; Gloria J. Bazzoli, PhD4; Eli Perencevich, MD5,6; Nancy Dunton, PhD7; Vincent S. Staggs, PhD8; Catima Potter, MPH7; Naleef Fareed, PhD9; Minzhao Liu, MS, PhD10; Ronald I. Shorr, MD, MS11,12
[+] Author Affiliations
1Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
2Department of Statistics and Data Sciences, The University of Texas at Austin
3Department of Integrative Biology, The University of Texas at Austin
4Department of Health Administration, Virginia Commonwealth University, Richmond
5Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City
6Iowa City Veterans Affairs Health Care System, Iowa City, Iowa
7School of Nursing, University of Kansas Medical Center, Kansas City, Missouri
8Department of Biostatistics, School of Medicine, University of Kansas Medical Center, Kansas City, Missouri
9Department of Health Policy and Administration, Pennsylvania State University, University Park
10Department of Statistics, University of Florida, Gainesville
11Department of Epidemiology, University of Florida, Gainesville
12Geriatric Research Education & Clinical Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
JAMA Intern Med. 2015;175(3):347-354. doi:10.1001/jamainternmed.2014.5486.
Text Size: A A A
Published online

Importance  In 2008, Medicare implemented the Hospital-Acquired Conditions (HACs) Initiative, a policy denying incremental payment for 8 complications of hospital care, also known as never events. The regulation’s effect on these events has not been well studied.

Objective  To measure the association between Medicare’s nonpayment policy and 4 outcomes addressed by the HACs Initiative: central line–associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), hospital-acquired pressure ulcers (HAPUs), and injurious inpatient falls.

Design, Setting, and Participants  Quasi-experimental study of adult nursing units from 1381 US hospitals participating in the National Database of Nursing Quality Indicators (NDNQI), a program of the American Nurses Association. The NDNQI data were combined with American Hospital Association, Medicare Cost Report, and local market data to examine adjusted outcomes. Multilevel models were used to evaluate the effect of Medicare’s nonpayment policy on never events.

Exposures  United States hospitals providing treatment for Medicare patients were subject to the new payment policy beginning in October 2008.

Main Outcomes and Measures  Changes in unit-level rates of HAPUs, injurious falls, CLABSIs, and CAUTIs after initiation of the policy.

Results  Medicare’s nonpayment policy was associated with an 11% reduction in the rate of change in CLABSIs (incidence rate ratio [IRR], 0.89; 95% CI, 0.83-0.95) and a 10% reduction in the rate of change in CAUTIs (IRR, 0.90; 95% CI, 0.85-0.95), but was not associated with a significant change in injurious falls (IRR, 0.99; 95% CI, 0.99-1.00) or HAPUs (odds ratio, 0.98; 95% CI, 0.96-1.01). Consideration of unit-, hospital-, and market-level factors did not significantly alter our findings.

Conclusions and Relevance  The HACs Initiative was associated with improvements in CLABSI and CAUTI trends, conditions for which there is strong evidence that better hospital processes yield better outcomes. However, the HACs Initiative was not associated with improvements in HAPU or injurious fall trends, conditions for which there is less evidence that changing hospital processes leads to significantly better outcomes.

Figures in this Article

The Hospital-Acquired Conditions (HACs) Initiative, mandated by Congress in the Deficit Reduction Act of 2005 and implemented in 2008, was one in a series of Centers for Medicare & Medicaid Services (CMS) payment reforms intended to increase emphasis on value-based purchasing.1 Eight complications, known as never events, were identified by the Department of Health and Human Services as high-cost or high-volume events that could reasonably be prevented through the application of evidence-based guidelines.2 Injury from falls, hospital-acquired pressure ulcers (HAPUs), catheter-associated urinary tract infections (CAUTIs), and central line–associated bloodstream infections (CLABSIs) were among the 8 never events covered by the HACs Initiative. Under the HACs Initiative, hospitals could no longer justify a higher-level Medicare severity diagnosis related group (MS-DRG) to recover costs incurred in caring for patients who developed 1 of the 8 never events.

Initial assessments of the policy focused on financial impact, estimated to be quite small.36 A recent analysis7 of CLABSIs and CAUTIs found no evidence that the policy had any measureable effect. However, this analysis was limited to 398 of the 1166 hospitals participating in the National Healthcare Safety Network, and the findings were limited by the small sample size and low response rate. In addition, no analysis has looked at the policy’s effect on a wider range of HACs. Although recent quality improvement efforts810 have yielded dramatic improvements in CLABSIs and CAUTIs, hospitals still struggle to identify evidence-based practices that significantly improve HAPUs and injurious falls. This heterogeneous experience suggested that the effect of the HACs Initiative might vary by type of outcome. Using outcome data reported to the National Database of Nursing Quality Indicators (NDNQI) for 4 HACs, we conducted a comprehensive impact assessment of the CMS nonpayment policy.

Data Sources

This study was approved by the institutional review boards of the University of Tennessee Health Science Center, University of Florida, and Virginia Commonwealth University. Because data were reported at the unit level, informed consent was not required.

Established by the American Nurses Association in 1998, the NDNQI is a data collection project administered by the University of Kansas School of Nursing. Hospitals join the NDNQI to benchmark their performance on nursing-sensitive indicators and, in some cases, to facilitate achieving and maintaining magnet designation. Participation in the NDNQI is voluntary, and hospitals pay an annual membership fee based on the number of beds. Member hospitals choose their data coordinator, who serves as a liaison with the NDNQI and ensures accurate data collection and reporting. The NDNQI provides training and support to data coordinators and their local designees (eg, infection control personnel), centralized data management, and quarterly dashboards for benchmarking outcomes with national peer comparison data. Participating hospitals agree to provide reliable data according to the NDNQI measure guidelines. Secure, web-based data entry with preprogrammed validations and postentry audits for errors and outliers are also used to ensure data integrity.

Currently, more than 1900 US hospitals contribute data to the NDNQI. We obtained data on 4 common HACs: HAPUs, injurious inpatient falls, CLABSIs, and CAUTIs. Unit-level HACs, volume (patients and patient-days), and unit characteristics (type and nurse staffing) data for periods before and after implementation of the CMS nonpayment policy change were obtained for adult medical, surgical, step-down, and intensive care units (ICUs) participating in the NDNQI.

American Hospital Association (AHA) annual survey data were merged with the NDNQI data to gather information on hospital ownership type, teaching status, system membership, services offered, staffed number of beds, adjusted patient-days, and payer market shares. We supplemented this information with Medicare case mix and financial performance data (total profit margin) available from CMS cost reports and inpatient, prospective payment system, final-rule impact files. Additional county-level data were abstracted from the Area Resource File, the Census Bureau, HealthLeaders-InterStudy, the Bureau of Labor Statistics, and the Bureau of Economic Analysis.

Outcome Measures
Pressure Ulcers

Trained nurses assessed the prevalence of pressure ulcers on a preselected day in the quarter (stages I-IV; hospital- and community-acquired). The NDNQI pressure ulcer indicator has been demonstrated to be reliable and is endorsed by the National Quality Forum.11,12 To maintain consistency with the CMS HACs, we selected only data on stage III/IV HAPUs, which are those that have resulted in full-thickness tissue loss. We constructed quarterly HAPU rates (patients with stage III/IV HAPUs per total patients present during the prevalence check) for all participating adult nursing units (ICU and non-ICU) for July 1, 2006, to December 31, 2010.

Injurious Falls

Using their incident reporting system combined with appropriate follow-up, hospitals report all inpatient falls to the NDNQI; to maintain some consistency with the CMS HACs, we selected patient falls with injury levels in the categories of minor and greater during each calendar month for all adult surgical, medical, and medical-surgical units, excluding ICUs and step-down units, where falls are most common.13,14 Monthly injurious fall rates (injurious falls per 1000 patient-days) were constructed for these nursing units for July 1, 2006, to December 31, 2010.

Central Line–Associated Bloodstream Infections

Hospitals reporting to the NDNQI identified all infections meeting Centers for Disease Control and Prevention (CDC) case definitions for laboratory-confirmed bloodstream infections in ICU patients with 1 or more central lines.15 The NDNQI infection definitions (CLABSI, CAUTI) have always matched those used by the National Hospital Safety Network. Through December 31, 2010, the NDNQI captured infections only for ICUs in the participating hospitals. Monthly CLABSI rates (infections per 1000 central line–days) were constructed for all participating adult ICUs for January 1, 2008, to December 31, 2010. Because infection rates were not added to the NDNQI until the end of 2007, we could not capture earlier time periods. Hospitals reporting CLABSIs and CAUTIs on January 1, 2008, had already been reporting other measures to the NDNQI for a mean of 9.24 years.

Catheter-Associated Urinary Tract Infections

Participating NDNQI hospitals reported all CAUTIs in ICUs meeting CDC definitions.15 Monthly CAUTI rates (infections per 1000 indwelling urinary catheter–days) were constructed for all participating adult ICUs from January 1, 2008, to December 31, 2010.

Statistical Analysis

We included all nonfederal US hospitals participating in the NDNQI in our analyses. Our examination of the outcome data (rates and proportions) indicated that Poisson and binomial regression models would not be appropriate due to overdispersion; for this reason, we fitted negative- and β-binomial models to predict monthly (or quarterly) outcomes. The impact of the CMS policy change was captured by including a dummy variable for time periods affected by the policy change (0, before; 1, after) and an interaction term between this dummy variable and a time trend. This approach allowed for the detection of changes in the rate level (intercept) as well as changes in the time trend before and after the CMS policy change (slope). An incidence rate ratio (IRR) or odds ratio (OR) of less than 1 associated with the slope would suggest that the CMS policy change significantly reduced the outcome trajectory.

For each outcome, we fit a negative binomial (β-binomial) model using the interaction term between this dummy variable and a time trend (base model). We then estimated 4 other versions of the model that added explanatory variables in blocks based on their level of observation (unit-level variables, then hospital variables, followed by market variables, and then all variables). We used this approach because we were primarily interested in whether inclusion of these additional variables had any effect on the direction, magnitude, or significance of the estimated policy effect.

We considered several model adjustments to account for correlation within units and over time and anticipatory or lagged responses. Models with lagged outcomes (time correlation) and alternative change points (up to ±3 months) did not yield qualitatively different results, so we restricted inferences to our final models. Unit-level random intercepts were included to account for correlation of outcomes within the same unit. The few missing outcomes data were assumed to be missing at random.

Study Population

The 1381 hospitals contributing data to our study were located in all 50 states and the District of Columbia. Characteristics of the hospitals reporting each outcome measure are listed in Table 1. Compared with the average community hospital reporting to the AHA Annual Survey of Hospitals, our reporting hospitals tended to be larger (14.6%-l8.3% had <100 beds vs 50.7% of AHA hospitals; P < .001), less likely to be located in rural areas (1.7%-3.3% vs 25.3%; P < .001), more likely to be teaching (Council of Teaching Hospital member or have residency training programs; 33.8%-38.5% vs 17.4%; P < .001), and more likely to be nonprofit (82.9%-85.8% vs 59.9%; P < .001). Although participating hospitals were more likely to be located in the Northeast and less likely to be located in the West, our sample contains substantial representation from all 4 census regions.

Table Graphic Jump LocationTable 1.  Characteristics of Study Hospitals vs Short-term General Hospitals Reporting to the AHA
Effect of the 2008 CMS Policy Change

Table 2 provides the results from the β-binomial model for HAPUs and negative binomial models for the other 3 outcomes. Our results suggest that Medicare’s nonpayment policy had no effect on the trajectories of stage III/IV HAPUs and injurious falls. The financial penalties were associated with more substantial changes in the infection outcomes, with an 11% reduction in the rate of change in CLABSIs (IRR, 0.89; 95% CI, 0.83-0.95) and a 10% reduction in the rate of change in CAUTIs (IRR, 0.90; 95% CI, 0.85-0.95). These results were stable after adjustment for unit-, hospital- and market-level factors.

Table Graphic Jump LocationTable 2.  Changes in Monthly and Quarterly Rates Over Time for HACs

The Figure illustrates the study results by presenting the fitted trajectories of HACs over time (from the base model). Stage III/IV HAPUs and inpatient injurious falls declined somewhat steadily during the study period (July 1, 2006, to December 31, 2010), with the policy introduction having little, if any, effect on their downward trend. Slight upward, but statistically insignificant, trends occurred in CLABSIs and CAUTIs during the first 9 months of our study period (January 1 to September 30, 2008), followed by significant downward trends in the subsequent 27 months (October 1, 2008, to December 31, 2010).

Place holder to copy figure label and caption
Figure.
Timing of Centers for Medicare & Medicaid Services Nonpayment Rule and Trends in Hospital-Acquired Conditions

Dashed vertical line indicates the introduction of the Medicare Nonpayment policy in the fourth quarter [Q] of 2008 (A) and October 2008 (B, C, and D).

Graphic Jump Location

Our results related to CLABSIs and CAUTIs differ from those reported by Lee et al,7 who found no evidence that the 2008 CMS nonpayment rule change had a statistically significant effect on the rates of CLABSIs or CAUTIs. There are several possible reasons for this discrepancy. First, the hospitals included in our samples were different; the Lee et al sample included 398 hospitals or health systems located primarily in the Northeast (40.7%) and our sample included 1381 hospitals, with strong representation in the South (32.8%-38.1%) and Midwest (29.3%-30.2%). Our sample also included more nonteaching hospitals (61.5%-66.2% vs 49.7%). Our data collection study time frame also differs from that of Lee et al7: they included CLABSIs and CAUTIs from January 1, 2006, to March 31, 2011, and our data for these measures covered January 1, 2008, to December 31, 2010. Although some might argue that longer time frames are desirable, our sample size was large enough to establish trends before and after the rule change in 2008.

Our findings suggest that the HACs Initiative was associated with at least a 10% reduction in the rate of change in infections (CLABSIs and CAUTIs) but had no effect on the rates of injurious falls or HAPUs. There are several factors that may account for this pattern of results.

Although prevention guidelines existed for all measures included in the 2008 rule,1620 not all were supported by the same level of scientific evidence. Evidence-based procedures for the prevention of CLABSIs and CAUTIs were relatively well developed prior to 2008.2022 It is arguable that the evidence base supporting the prevention of injurious falls and HAPUs was less robust. In fact, one comprehensive review23 of inpatient falls prevention found that, at best, multifaceted strategies may be able to reduce falls by 20%. Evidence-based preventive strategies for pressure ulcers were widely available in 2008,24 but clinicians expressed significant concerns over identifying stage I pressure ulcers on admission before they became serious stage III/IV ulcers and viewing all pressure ulcers as preventable.

Medicare’s nonpayment policy may have been particularly successful in driving change for infection outcomes because the science supporting infection prevention practices was already well developed in 2008.21,22 Also of critical significance was the 2006 publication8 of the Michigan Keystone project results, which demonstrated dramatic declines of up to 66% in CLABSIs for more than 100 ICUs participating in the statewide collaborative. These results generated a sweeping culture shift in critical care medicine, leading providers to no longer view hospital-acquired infections as simply inevitable.25 In 2007, on the heels of their successful CLABSI results, the Michigan Hospital Association Keystone Center launched a statewide hospital initiative to reduce all hospital-acquired infections.9

In contrast, evidence-based falls prevention was not well developed, and there were significant questions about the preventability of some HAPUs.23 With respect to fall injuries, authors of the CMS final rule noted, “we have not identified specific prevention guidelines for the conditions…. We believe these types of injuries and trauma should not occur in the hospital, and we look forward to working with CDC and the public in identifying research…that will assist hospitals…to prevent these conditions from occurring.”1(p47215) With respect to pressure ulcers, CMS noted, “we believe the selection of this condition will result in closer examination of the patient’s skin on admission and better quality of care…. We acknowledge the…concern that…some pressure ulcers are ‘unavoidable.’ However, we believe improved screening to identify pressure ulcers upon admission…will improve the quality of care.”1(p47205) Thus, for both fall injury and HAPUs, CMS appeared to be relying on penalties to drive more science rather than relying on the existing science to support improvement.

Prevention of CLABSIs and CAUTIs may also be more amenable to standardization, facilitating effective dissemination and implementation of process improvements. Best practice guidelines for the prevention of CLABSIs and CAUTIs call for attention to a limited set of critical events (eg, sterile insertion procedures10,20 and earlier withdrawal of catheters26,27) and specific changes to purchasing patterns (antimicrobial catheters for CLABSIs,22 chlorhexidine insertion-site patches21). In addition, these infections are more likely to occur in ICUs or specialized units where a limited set of patients are under the vigilant eye of a focused medical team and infection control departments. The CLABSI and CAUTI “care bundles” that involve an ordered series of clearly defined, evidence-based practices have gained widespread popularity.9,10 Adoption of bundles and checklists has been associated with significant reductions in CLABSIs and CAUTIs.28,29 In contrast, constant vigilance and teamwork across hospital units are critical to identifying patients at risk for HAPUs or falls; the need for ongoing and comprehensive prevention in these areas makes standardization far more challenging.23,24

Our study has several limitations. Hospitals reporting to the NDNQI during our study period were somewhat larger, more often located in urban areas, and more likely to be nonprofit compared with the average nonfederal hospital reporting data to the AHA. Reporting to the NDNQI is voluntary, and hospitals may choose not to report in a particular month or quarter. Rates of reporting, however, are high, with 90% of eligible units reporting data and low rates of missing data among outcomes (2%-4%). Also, the rates of these events are consistent with those reported in other data sources,3033 and nurse staffing trends at hospitals reporting to NDNQI are similar to those reported in AHA data.34 There is evidence that NDNQI participation is associated with improvements in nursing-sensitive quality indicators,3537 but our study was designed to test the effect of the HACs Initiative beyond secular trends that might be introduced by participating in NDNQI. Hospitals participating in NDNQI tend to be larger and more urban and are more likely to be academically affiliated than are all US hospitals, but we found that hospital- and market-level covariates had little effect on our findings.

Another limitation of the NDNQI data was that our measure of pressure ulcers represented prevalence rather than incidence, but evaluators indicate whether the pressure ulcer was present on admission vs acquired in the hospital. Although the falls data in NDNQI provide incidence rates, they originate from hospital incident reports, which may not capture all falls.38 The NDNQI CLABSI and CAUTI data were limited to ICU events, but the CMS policy was not. Although ICUs are a very important site for these infections—2009/2010 National Healthcare Safety Network reports indicate that 63% of CAUTIs and 74% of CLABSIs occurred in ICUs31,32—infections outside the ICU are a growing concern that our data cannot address.

Finally, because we were evaluating the effect of a nationwide policy change, our study design was, by necessity, a pre-post comparison of outcomes. It is not possible to attribute the changes we observed to the policy alone, without consideration of other programs or events that encouraged hospitals and providers to enhance prevention efforts related to the targeted HACs. However, our analytical approach used appropriate statistical methods to detect changes in both the (rate) levels and time trends. In addition, we adjusted for an array of unit, hospital, and market characteristics and found no effect on our conclusions.

Despite these limitations, we believe that the NDNQI sample provided credible national information on trends in HACs covered by the CMS policy change. One particular advantage of this data set was a focus on nursing quality of care that was unrelated to coding, which can reflect bias because of changes in Medicare reimbursement. It is not likely that changes in CMS payment policy affected reporting to the NDNQI. Another advantage of these data is that they provide unit-level information on adverse events and staffing. To the extent that these outcomes were affected by unit-level factors, this disaggregation may provide insights not offered by hospital-level data.

Despite the relatively modest financial effect of Medicare’s HACs Initiative, the policy appears to have been effective in the reduction of specific never events. In particular, penalties may have been most effective where evidence for prevention was clearest or prevention was more conducive to standardized dissemination and implementation. Our results provide important insights relevant to other CMS initiatives related to HACs, including public reporting of health care–associated infections (Hospital Compare) and assessment of hospital penalties under the Hospital-Acquired Condition Reduction Program to be implemented in fiscal year 2015 (mandated by the Affordable Care Act). Although the former initiative uses transparency and the latter uses penalties, both initiatives provide incentives for hospitals to improve their performance. Our results suggest that initiatives focusing on areas with a well-developed evidence base for prevention and areas amenable to standardization are more likely to be successful in driving improvement. Conversely, when preventability and standardization are absent, our results suggest that the intended objectives may not be achieved. When selecting new areas for quality improvement focus, policymakers may wish to invest directly in the science, rather than rely on incentives to drive scientific development, when a strong evidence base and standardization are lacking.

Accepted for Publication: July 24, 2014.

Corresponding Author: Teresa M. Waters, PhD, Department of Preventive Medicine, University of Tennessee Health Science Center, 66 N Pauline St, Ste 633, Memphis, TN 38163 (twaters@uthsc.edu).

Published Online: January 5, 2015. doi:10.1001/jamainternmed.2014.5486.

Author Contributions: Dr Waters had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Waters, Daniels, Bazzoli, Shorr.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Waters, Daniels, Bazzoli, Fareed, Shorr.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Waters, Daniels, Bazzoli, Liu.

Obtained funding: Waters, Daniels, Bazzoli, Dunton, Shorr.

Administrative, technical, or material support: Waters, Dunton, Potter.

Study supervision: Waters, Daniels, Bazzoli, Perencevich, Dunton.

Conflict of Interest Disclosures: None reported.

Funding/Support: Drs Waters, Daniels, Bazzoli, Perencevich, Dunton, Staggs, Fareed, and Shorr and Ms Potter were supported by grant 1R01HS020627-01 from the Agency for Healthcare Research and Quality during the conduct of this study. Drs Waters, Daniels, Dunton, Staggs, and Shorr and Ms Potter were also supported by grant R01 AG033005 from the National Institute on Aging.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Centers for Medicare & Medicaid Services (CMS), HHS.  Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates. Fed Regist. 2007;72(162):47129-48175.
PubMed
Rosenthal  MB.  Nonpayment for performance? Medicare’s new reimbursement rule. N Engl J Med. 2007;357(16):1573-1575.
PubMed   |  Link to Article
Meddings  JA, Reichert  H, Rogers  MA, Saint  S, Stephansky  J, McMahon  LF.  Effect of nonpayment for hospital-acquired, catheter-associated urinary tract infection: a statewide analysis. Ann Intern Med. 2012;157(5):305-312.
PubMed   |  Link to Article
McNair  PD, Luft  HS, Bindman  AB.  Medicare’s policy not to pay for treating hospital-acquired conditions: the impact. Health Aff (Millwood). 2009;28(5):1485-1493.
PubMed   |  Link to Article
McHugh  M, Martin  TC, Orwat  J, Dyke  KV.  Medicare’s policy to limit payment for hospital-acquired conditions: the impact on safety net providers. J Health Care Poor Underserved. 2011;22(2):638-647.
PubMed   |  Link to Article
McNutt  R, Johnson  TJ, Odwazny  R,  et al.  Change in MS-DRG assignment and hospital reimbursement as a result of Centers for Medicare & Medicaid changes in payment for hospital-acquired conditions: is it coding or quality? Qual Manag Health Care. 2010;19(1):17-24.
PubMed   |  Link to Article
Lee  GM, Kleinman  K, Soumerai  SB,  et al.  Effect of nonpayment for preventable infections in US hospitals. N Engl J Med. 2012;367(15):1428-1437.
PubMed   |  Link to Article
Pronovost  P, Needham  D, Berenholtz  S,  et al.  An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725-2732.
PubMed   |  Link to Article
Saint  S, Olmsted  RN, Fakih  MG,  et al.  Translating health care-associated urinary tract infection prevention research into practice via the bladder bundle. Jt Comm J Qual Patient Saf. 2009;35(9):449-455.
PubMed
Furuya  EY, Dick  A, Perencevich  EN, Pogorzelska  M, Goldmann  D, Stone  PW.  Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One. 2011;6(1):e15452. doi:10.1371/journal.pone.0015452.
PubMed   |  Link to Article
Black  JM, Edsberg  LE, Baharestani  MM,  et al; National Pressure Ulcer Advisory Panel.  Pressure ulcers: avoidable or unavoidable? results of the National Pressure Ulcer Advisory Panel consensus conference. Ostomy Wound Manage. 2011;57(2):24-37.
PubMed
National Quality Forum. National voluntary consensus standards for developing a framework for measuring quality for prevention and management of pressure ulcers.http://www.qualityforum.org/Projects/n-r/Pressure_Ulcer/Pressure_Ulcers.aspx. Accessed October 12, 2014.
He  J, Dunton  N, Staggs  V.  Unit-level time trends in inpatient fall rates of US hospitals. Med Care. 2012;50(9):801-807.
PubMed   |  Link to Article
Lake  ET, Shang  J, Klaus  S, Dunton  NE.  Patient falls: association with hospital magnet status and nursing unit staffing. Res Nurs Health. 2010;33(5):413-425.
PubMed   |  Link to Article
Horan  TC, Andrus  M, Dudeck  MA.  CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-332.
PubMed   |  Link to Article
Joint Commission on Accreditation of Healthcare Organizations. The Implementation Guide for the NQF Endorsed Nursing-Sensitive Performance Measures. Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 2006.
Barker  A, Kamar  J, Morton  A, Berlowitz  D.  Bridging the gap between research and practice: review of a targeted hospital inpatient fall prevention programme. Qual Saf Health Care. 2009;18(6):467-472.
PubMed   |  Link to Article
Schwendimann  R, De Geest  S, Milisen  K.  Evaluation of the Morse Fall Scale in hospitalised patients. Age Ageing. 2006;35(3):311-313.
PubMed   |  Link to Article
Marschall  J, Mermel  LA, Classen  D,  et al.  Strategies to prevent central line–associated bloodstream infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(suppl 1):S22-S30.
PubMed   |  Link to Article
Lo  E, Nicolle  L, Classen  D,  et al.  Strategies to prevent catheter-associated urinary tract infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(suppl 1):S41-S50.
PubMed   |  Link to Article
Timsit  J-F, Schwebel  C, Bouadma  L,  et al; Dressing Study Group.  Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231-1241.
PubMed   |  Link to Article
Casey  AL, Mermel  LA, Nightingale  P, Elliott  TS.  Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(12):763-776.
PubMed   |  Link to Article
Oliver  D, Connelly  JB, Victor  CR,  et al.  Strategies to prevent falls and fractures in hospitals and care homes and effect of cognitive impairment: systematic review and meta-analyses. BMJ. 2007;334(7584):82.
PubMed   |  Link to Article
Reddy  M, Gill  SS, Rochon  PA.  Preventing pressure ulcers: a systematic review. JAMA. 2006;296(8):974-984.
PubMed   |  Link to Article
Dixon-Woods  M, Perencevich  EN.  When counting central line infections counts. Infect Control Hosp Epidemiol. 2013;34(6):555-557.
PubMed   |  Link to Article
Davis  MBH.  Pediatric central venous catheter management: a review of current practice. J Assoc Vasc Access.2013;18(2):93-98.
Link to Article
Trautner  BW.  Management of catheter-associated urinary tract infection. Curr Opin Infect Dis. 2010;23(1):76-82.
PubMed   |  Link to Article
Schulman  J, Stricof  R, Stevens  TP,  et al; New York State Regional Perinatal Care Centers.  Statewide NICU central-line–associated bloodstream infection rates decline after bundles and checklists. Pediatrics. 2011;127(3):436-444.
PubMed   |  Link to Article
Clarke  K, Tong  D, Pan  Y,  et al.  Reduction in catheter-associated urinary tract infections by bundling interventions. Int J Qual Health Care. 2013;25(1):43-49.
PubMed   |  Link to Article
VanGilder  C, Amlung  S, Harrison  P, Meyer  S.  Results of the 2008-2009 International Pressure Ulcer Prevalence Survey and a 3-year, acute care, unit-specific analysis. Ostomy Wound Manage. 2009;55(11):39-45.
PubMed
Dudeck  MA, Horan  TC, Peterson  KD,  et al.  National Healthcare Safety Network (NHSN) report, data summary for 2010, device-associated module. Am J Infect Control. 2011;39(10):798-816.
PubMed   |  Link to Article
Dudeck  MA, Horan  TC, Peterson  KD,  et al.  National Healthcare Safety Network (NHSN) report, data summary for 2009, device-associated module. Am J Infect Control. 2011;39(5):349-367.
PubMed   |  Link to Article
Bouldin  EL, Andresen  EM, Dunton  NE,  et al.  Falls among adult patients hospitalized in the United States: prevalence and trends. J Patient Saf. 2013;9(1):13-17.
PubMed
Staggs  VS, He  J.  Recent trends in hospital nurse staffing in the United States. J Nurs Adm. 2013;43(7-8):388-393.
PubMed   |  Link to Article
Duncan  J, Montalvo  I, Dunton  N. NDNQI Case Studies in Nursing Quality Improvement. Silver Spring, MD: American Nurses Association; 2011.
Dunton  N, Montalvo  I. Sustained Improvement in Nursing Quality: Hospital Performance on NDNQI Indicators, 2007-2008. Silver Spring, MD: American Nurses Association; 2009.
Montalvo  I, Dunton  N. Transforming Nursing Data Into Quality Care: Profiles of Quality Improvement in US Healthcare Facilities: Nursesbooks.org. Silver Spring, MD: American Nurses Association; 2007.
Shorr  RI, Mion  LC, Chandler  AM, Rosenblatt  LC, Lynch  D, Kessler  LA.  Improving the capture of fall events in hospitals: combining a service for evaluating inpatient falls with an incident report system. J Am Geriatr Soc. 2008;56(4):701-704.
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Figure.
Timing of Centers for Medicare & Medicaid Services Nonpayment Rule and Trends in Hospital-Acquired Conditions

Dashed vertical line indicates the introduction of the Medicare Nonpayment policy in the fourth quarter [Q] of 2008 (A) and October 2008 (B, C, and D).

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1.  Characteristics of Study Hospitals vs Short-term General Hospitals Reporting to the AHA
Table Graphic Jump LocationTable 2.  Changes in Monthly and Quarterly Rates Over Time for HACs

References

Centers for Medicare & Medicaid Services (CMS), HHS.  Medicare program: changes to the hospital inpatient prospective payment systems and fiscal year 2008 rates. Fed Regist. 2007;72(162):47129-48175.
PubMed
Rosenthal  MB.  Nonpayment for performance? Medicare’s new reimbursement rule. N Engl J Med. 2007;357(16):1573-1575.
PubMed   |  Link to Article
Meddings  JA, Reichert  H, Rogers  MA, Saint  S, Stephansky  J, McMahon  LF.  Effect of nonpayment for hospital-acquired, catheter-associated urinary tract infection: a statewide analysis. Ann Intern Med. 2012;157(5):305-312.
PubMed   |  Link to Article
McNair  PD, Luft  HS, Bindman  AB.  Medicare’s policy not to pay for treating hospital-acquired conditions: the impact. Health Aff (Millwood). 2009;28(5):1485-1493.
PubMed   |  Link to Article
McHugh  M, Martin  TC, Orwat  J, Dyke  KV.  Medicare’s policy to limit payment for hospital-acquired conditions: the impact on safety net providers. J Health Care Poor Underserved. 2011;22(2):638-647.
PubMed   |  Link to Article
McNutt  R, Johnson  TJ, Odwazny  R,  et al.  Change in MS-DRG assignment and hospital reimbursement as a result of Centers for Medicare & Medicaid changes in payment for hospital-acquired conditions: is it coding or quality? Qual Manag Health Care. 2010;19(1):17-24.
PubMed   |  Link to Article
Lee  GM, Kleinman  K, Soumerai  SB,  et al.  Effect of nonpayment for preventable infections in US hospitals. N Engl J Med. 2012;367(15):1428-1437.
PubMed   |  Link to Article
Pronovost  P, Needham  D, Berenholtz  S,  et al.  An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725-2732.
PubMed   |  Link to Article
Saint  S, Olmsted  RN, Fakih  MG,  et al.  Translating health care-associated urinary tract infection prevention research into practice via the bladder bundle. Jt Comm J Qual Patient Saf. 2009;35(9):449-455.
PubMed
Furuya  EY, Dick  A, Perencevich  EN, Pogorzelska  M, Goldmann  D, Stone  PW.  Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One. 2011;6(1):e15452. doi:10.1371/journal.pone.0015452.
PubMed   |  Link to Article
Black  JM, Edsberg  LE, Baharestani  MM,  et al; National Pressure Ulcer Advisory Panel.  Pressure ulcers: avoidable or unavoidable? results of the National Pressure Ulcer Advisory Panel consensus conference. Ostomy Wound Manage. 2011;57(2):24-37.
PubMed
National Quality Forum. National voluntary consensus standards for developing a framework for measuring quality for prevention and management of pressure ulcers.http://www.qualityforum.org/Projects/n-r/Pressure_Ulcer/Pressure_Ulcers.aspx. Accessed October 12, 2014.
He  J, Dunton  N, Staggs  V.  Unit-level time trends in inpatient fall rates of US hospitals. Med Care. 2012;50(9):801-807.
PubMed   |  Link to Article
Lake  ET, Shang  J, Klaus  S, Dunton  NE.  Patient falls: association with hospital magnet status and nursing unit staffing. Res Nurs Health. 2010;33(5):413-425.
PubMed   |  Link to Article
Horan  TC, Andrus  M, Dudeck  MA.  CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-332.
PubMed   |  Link to Article
Joint Commission on Accreditation of Healthcare Organizations. The Implementation Guide for the NQF Endorsed Nursing-Sensitive Performance Measures. Oakbrook Terrace, IL: Joint Commission on Accreditation of Healthcare Organizations; 2006.
Barker  A, Kamar  J, Morton  A, Berlowitz  D.  Bridging the gap between research and practice: review of a targeted hospital inpatient fall prevention programme. Qual Saf Health Care. 2009;18(6):467-472.
PubMed   |  Link to Article
Schwendimann  R, De Geest  S, Milisen  K.  Evaluation of the Morse Fall Scale in hospitalised patients. Age Ageing. 2006;35(3):311-313.
PubMed   |  Link to Article
Marschall  J, Mermel  LA, Classen  D,  et al.  Strategies to prevent central line–associated bloodstream infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(suppl 1):S22-S30.
PubMed   |  Link to Article
Lo  E, Nicolle  L, Classen  D,  et al.  Strategies to prevent catheter-associated urinary tract infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(suppl 1):S41-S50.
PubMed   |  Link to Article
Timsit  J-F, Schwebel  C, Bouadma  L,  et al; Dressing Study Group.  Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231-1241.
PubMed   |  Link to Article
Casey  AL, Mermel  LA, Nightingale  P, Elliott  TS.  Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(12):763-776.
PubMed   |  Link to Article
Oliver  D, Connelly  JB, Victor  CR,  et al.  Strategies to prevent falls and fractures in hospitals and care homes and effect of cognitive impairment: systematic review and meta-analyses. BMJ. 2007;334(7584):82.
PubMed   |  Link to Article
Reddy  M, Gill  SS, Rochon  PA.  Preventing pressure ulcers: a systematic review. JAMA. 2006;296(8):974-984.
PubMed   |  Link to Article
Dixon-Woods  M, Perencevich  EN.  When counting central line infections counts. Infect Control Hosp Epidemiol. 2013;34(6):555-557.
PubMed   |  Link to Article
Davis  MBH.  Pediatric central venous catheter management: a review of current practice. J Assoc Vasc Access.2013;18(2):93-98.
Link to Article
Trautner  BW.  Management of catheter-associated urinary tract infection. Curr Opin Infect Dis. 2010;23(1):76-82.
PubMed   |  Link to Article
Schulman  J, Stricof  R, Stevens  TP,  et al; New York State Regional Perinatal Care Centers.  Statewide NICU central-line–associated bloodstream infection rates decline after bundles and checklists. Pediatrics. 2011;127(3):436-444.
PubMed   |  Link to Article
Clarke  K, Tong  D, Pan  Y,  et al.  Reduction in catheter-associated urinary tract infections by bundling interventions. Int J Qual Health Care. 2013;25(1):43-49.
PubMed   |  Link to Article
VanGilder  C, Amlung  S, Harrison  P, Meyer  S.  Results of the 2008-2009 International Pressure Ulcer Prevalence Survey and a 3-year, acute care, unit-specific analysis. Ostomy Wound Manage. 2009;55(11):39-45.
PubMed
Dudeck  MA, Horan  TC, Peterson  KD,  et al.  National Healthcare Safety Network (NHSN) report, data summary for 2010, device-associated module. Am J Infect Control. 2011;39(10):798-816.
PubMed   |  Link to Article
Dudeck  MA, Horan  TC, Peterson  KD,  et al.  National Healthcare Safety Network (NHSN) report, data summary for 2009, device-associated module. Am J Infect Control. 2011;39(5):349-367.
PubMed   |  Link to Article
Bouldin  EL, Andresen  EM, Dunton  NE,  et al.  Falls among adult patients hospitalized in the United States: prevalence and trends. J Patient Saf. 2013;9(1):13-17.
PubMed
Staggs  VS, He  J.  Recent trends in hospital nurse staffing in the United States. J Nurs Adm. 2013;43(7-8):388-393.
PubMed   |  Link to Article
Duncan  J, Montalvo  I, Dunton  N. NDNQI Case Studies in Nursing Quality Improvement. Silver Spring, MD: American Nurses Association; 2011.
Dunton  N, Montalvo  I. Sustained Improvement in Nursing Quality: Hospital Performance on NDNQI Indicators, 2007-2008. Silver Spring, MD: American Nurses Association; 2009.
Montalvo  I, Dunton  N. Transforming Nursing Data Into Quality Care: Profiles of Quality Improvement in US Healthcare Facilities: Nursesbooks.org. Silver Spring, MD: American Nurses Association; 2007.
Shorr  RI, Mion  LC, Chandler  AM, Rosenblatt  LC, Lynch  D, Kessler  LA.  Improving the capture of fall events in hospitals: combining a service for evaluating inpatient falls with an incident report system. J Am Geriatr Soc. 2008;56(4):701-704.
PubMed   |  Link to Article

Correspondence

CME


You need to register in order to view this quiz.

Multimedia

Some tools below are only available to our subscribers or users with an online account.

8,430 Views
16 Citations
×

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Related Multimedia

Author Interview

audio player

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
JAMAevidence.com

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Falls, Older Adults

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Make the Diagnosis: Will This Patient Fall?