0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Research Letters |

Cost-effectiveness of Enhanced Depression Care After Acute Coronary Syndrome: Results From the Coronary Psychosocial Evaluation Studies Randomized Controlled Trial FREE

Joseph A. Ladapo, MD, PhD; Jonathan A. Shaffer, PhD; Yixin Fang, PhD; Siqin Ye, MD; Karina W. Davidson, PhD
[+] Author Affiliations

Author Affiliations: Department of Population Health, New York University School of Medicine, New York (Drs Ladapo and Fang); and Department of Medicine, Columbia University College of Physicians and Surgeons, New York (Drs Shaffer, Ye, and Davidson).


Arch Intern Med. 2012;172(21):1682-1684. doi:10.1001/archinternmed.2012.4448.
Text Size: A A A
Published online

Depression following an acute coronary syndrome (ACS) affects 2 in 5 patients and is one of the most important psychosocial predictors of a poor cardiovascular prognosis.1 In the Coronary Psychosocial Evaluation Studies (COPES) randomized controlled trial, we compared the effectiveness of enhanced depression care, which comprised patient preference for problem-solving psychotherapy, antidepressant use, or both, through the use of a stepped-care algorithm, with usual care in patients with ACS and persistent depressive symptoms 3 months after discharge.2 The 6-month trial demonstrated that enhanced depression care improved patient satisfaction with treatment and reduced depressive symptoms. However, the intervention's impact on health-related quality of life, health care utilization, and cost-effectiveness has not been evaluated. To help bridge this gap and inform decision making, we undertook a cost-effectiveness analysis of enhanced depression treatment in patients with ACS and persistent depressive symptoms using results from the COPES trial.

We interviewed patients to determine their antidepressant and anxiolytic medication use and dose; ambulatory care visits with mental health specialists, cardiologists, and primary care physicians; and hospitalizations for stable angina, unstable angina, ST-segment elevation or non–ST-segment elevation myocardial infarction, and congestive heart failure. Hospitalizations were confirmed by medical chart review and adjudicated by 2 board-certified cardiologists. Hospital electronic health records were also actively surveyed for hospitalizations. Costs were estimated using average wholesale drug prices and Medicare reimbursement rates. Standardized measures of quality of life were obtained using the 12-Item Short Form Health Survey (SF-12) and converted to health utilities using the Short Form 6 Dimensions (SF-6D) scoring algorithm.3

Quality of life, health care utilization, and cost outcomes were adjusted for potential confounding by age, sex, ethnicity, race, marital status, education, depressive symptom severity, type of ACS, and left ventricular ejection fraction using linear regression models. To determine cost-effectiveness, mean incremental costs and mean incremental quality-adjusted life-years were estimated using 6-month outcomes. We performed nonparametric bootstrapping with 1000 random samples to estimate 95% confidence intervals for cost-effectiveness ratios.4

The mean (SD) age of the study population was 60 (10.6) years, and 53% were female, 49% were Hispanic, and 19% were African American. At the 6-month follow-up, greater improvements in health utility were observed in the intervention group compared with the usual care group, although were not statistically significant (0.60 vs 0.56; P = .07).

Among patients randomized to receive enhanced depression care, 51% reported using antidepressants or anxiolytics compared with 30% of patients receiving usual care, with mean costs of $261 compared with $236 (adjusted difference, $18; P = .81) (Table). Use of mental health care was also more frequent in the intervention arm, with 75% visiting a mental health specialist at least once, compared with 35% in usual care arm (mean cost $585 vs $58; adjusted difference, $535; P < .001). The frequency of visits to cardiologists and primary care physicians was similar in the intervention and control groups, with 88% and 92% of patients reporting at least 1 cardiology appointment and 95% and 92% of patients reporting at least 1 primary care appointment, respectively. Mean total costs for ambulatory care in the intervention group were $1083 compared with $554 in the usual care group (adjusted difference, $536; P < .001).

Table Graphic Jump LocationTable. Health Care Utilization and Costs Over 6 Monthsa

The higher costs of mental health care and higher use of psychotropic medications in the intervention group were offset by savings in hospitalizations for major adverse cardiac events and heart failure. Overall, 5% of patients receiving enhanced depression care compared with 16% of patients receiving usual care were hospitalized for stable angina, unstable angina, ST-segment elevation or non–ST-segment elevation myocardial infarction, or heart failure. This difference in hospitalization rates resulted in a cost difference of −$1782 (95% CI, −$3163 to −$402; P = .01).

Mean total health care costs, including costs for psychotropic medications, ambulatory care, and hospitalizations, totaled $1857 for the enhanced depression care group and $2797 for the usual care group (adjusted difference, −$1229 per patient; 95% CI, −$2652 to $195; P = .09). Because the intervention was cost saving on average, no mean cost-effectiveness ratio exists. Bootstrap analysis demonstrated that if society is willing to pay $30 000 per quality-adjusted life-year gained by enhanced depression care, the probability that this treatment approach will be considered cost-effective is 98%.

To our knowledge, this analysis is the first economic evaluation of enhanced depression treatment in patients with ACS and persistent depressive symptoms. A growing body of evidence suggests that mental health problems complicate physical health conditions and that this relationship worsens clinical outcomes,1 increases hospitalizations,5 and adversely affects quality of life.6,7 Another recent study of patients with depression and poorly controlled diabetes mellitus or coronary heart disease found that a multicomponent treatment program, with particular emphasis on depressive symptoms, reduced health care costs.8 The findings from our study support this conclusion, while highlighting the need for larger studies with longer follow-up to examine the robustness and durability of these findings.

Correspondence: Dr Ladapo, Department of Population Health, New York University School of Medicine, 550 First Ave, Room 614, New York, NY 10016 (joseph.ladapo@nyumc.org).

Published Online: October 15, 2012. doi:10.1001/archinternmed.2012.4448

Author Contributions:Study concept and design: Ladapo and Davidson. Acquisition of data: Ye. Analysis and interpretation of data: Ladapo, Shaffer, and Fang. Drafting of the manuscript: Ladapo and Davidson. Critical revision of the manuscript for important intellectual content: Ladapo, Shaffer, Fang, Ye, and Davidson. Statistical analysis: Ladapo and Fang. Obtained funding: Davidson. Administrative, technical, and material support: Shaffer and Davidson. Study supervision: Davidson.

Financial Disclosure: None reported.

Funding/Support: This study was supported by National Heart, Lung, and Blood Institute grants HC-25197, HL-088117, HL-101663, and HL-84034. Support for Dr Shaffer was provided by Health Resources and Services Administration grant T32 HP10260 and American Heart Association grant 12CRP8870004. Support for Dr Ye was provided by an American College of Cardiology/Merck Research Fellowship award and by National Institutional of Health grant T32HL007854-16.

van Melle JP, de Jonge P, Spijkerman TA,  et al.  Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis.  Psychosom Med. 2004;66(6):814-822
PubMed   |  Link to Article
Davidson KW, Rieckmann N, Clemow L,  et al.  Enhanced depression care for patients with acute coronary syndrome and persistent depressive symptoms: coronary psychosocial evaluation studies randomized controlled trial.  Arch Intern Med. 2010;170(7):600-608
PubMed   |  Link to Article
Brazier JE, Roberts J. The estimation of a preference-based measure of health from the SF-12.  Med Care. 2004;42(9):851-859
PubMed   |  Link to Article
Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps: a non-parametric approach to confidence interval estimation.  Health Econ. 1997;6(4):327-340
PubMed   |  Link to Article
Frasure-Smith N, Lespérance F, Gravel G,  et al.  Depression and health-care costs during the first year following myocardial infarction.  J Psychosom Res. 2000;48(4-5):471-478
PubMed   |  Link to Article
Ruo B, Rumsfeld JS, Hlatky MA, Liu H, Browner WS, Whooley MA. Depressive symptoms and health-related quality of life: the Heart and Soul Study.  JAMA. 2003;290(2):215-221
PubMed   |  Link to Article
Swenson JR, O’Connor CM, Barton D,  et al; Sertraline Antidepressant Heart Attack Randomized Trial (SADHART) Group.  Influence of depression and effect of treatment with sertraline on quality of life after hospitalization for acute coronary syndrome.  Am J Cardiol. 2003;92(11):1271-1276
PubMed   |  Link to Article
Katon W, Russo J, Lin EH,  et al.  Cost-effectiveness of a multicondition collaborative care intervention: a randomized controlled trial.  Arch Gen Psychiatry. 2012;69(5):506-514
PubMed   |  Link to Article

Figures

Tables

Table Graphic Jump LocationTable. Health Care Utilization and Costs Over 6 Monthsa

References

van Melle JP, de Jonge P, Spijkerman TA,  et al.  Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis.  Psychosom Med. 2004;66(6):814-822
PubMed   |  Link to Article
Davidson KW, Rieckmann N, Clemow L,  et al.  Enhanced depression care for patients with acute coronary syndrome and persistent depressive symptoms: coronary psychosocial evaluation studies randomized controlled trial.  Arch Intern Med. 2010;170(7):600-608
PubMed   |  Link to Article
Brazier JE, Roberts J. The estimation of a preference-based measure of health from the SF-12.  Med Care. 2004;42(9):851-859
PubMed   |  Link to Article
Briggs AH, Wonderling DE, Mooney CZ. Pulling cost-effectiveness analysis up by its bootstraps: a non-parametric approach to confidence interval estimation.  Health Econ. 1997;6(4):327-340
PubMed   |  Link to Article
Frasure-Smith N, Lespérance F, Gravel G,  et al.  Depression and health-care costs during the first year following myocardial infarction.  J Psychosom Res. 2000;48(4-5):471-478
PubMed   |  Link to Article
Ruo B, Rumsfeld JS, Hlatky MA, Liu H, Browner WS, Whooley MA. Depressive symptoms and health-related quality of life: the Heart and Soul Study.  JAMA. 2003;290(2):215-221
PubMed   |  Link to Article
Swenson JR, O’Connor CM, Barton D,  et al; Sertraline Antidepressant Heart Attack Randomized Trial (SADHART) Group.  Influence of depression and effect of treatment with sertraline on quality of life after hospitalization for acute coronary syndrome.  Am J Cardiol. 2003;92(11):1271-1276
PubMed   |  Link to Article
Katon W, Russo J, Lin EH,  et al.  Cost-effectiveness of a multicondition collaborative care intervention: a randomized controlled trial.  Arch Gen Psychiatry. 2012;69(5):506-514
PubMed   |  Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 9

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles
JAMAevidence.com

The Rational Clinical Examination
Evidence Summary and Review 2

The Rational Clinical Examination
Multivariate Findings for ACI Syndromes